Degradable silk fibroin based piezoresistive sensor for wearable biomonitoring
Tóm tắt
Từ khóa
Tài liệu tham khảo
Huang J, Xie G, Wei Q, Su Y, Xu X, Jiang Y. Degradable MXene-doped polylactic acid textiles for wearable biomonitoring. ACS Appl Mater Interfaces. 2023;15(4):5600–7.
Pan H, Chen G, Chen Y, Di Carlo A, Mayer MA, Shen S, Chen C, Li W, Subramaniam S, Huang H, Tai H, Jiang Y, Xie G, Su Y, Chen J. Biodegradable cotton fiber-based piezoresistive textiles for wearable biomonitoring. Biosens Bioelectron. 2023;222:114999–5006.
Veeramuthu L, Cho CJ, Liang FC, Venkatesan M, Kumar GR, Hsu HY, Chung RJ, Lee CH, Lee WY, Kuo CC. Human skin-inspired electrospun patterned robust strain-insensitive pressure sensors and wearable flexible light-emitting diodes. ACS Appl Mater Interfaces. 2022;14(26):30160–73.
Wang XM, Tao LQ, Yuan M, Wang ZP, Yu J, Xie D, Luo F, Chen X, Wong C. Sea urchin-like microstructure pressure sensors with an ultra-broad range and high sensitivity. Nat Commun. 2021;12(1):1776–84.
Kim Y, Chortos A, Xu W, Liu Y, Oh JY, Son D, Kang J, Foudeh AM, Zhu C, Lee Y, Niu S, Liu J, Pfattner R, Bao Z, Lee T-W. A bioinspired flexible organic artificial afferent nerve. Science. 2018;360:998–1003.
Boutry CM, Negre M, Jorda M, Vardoulis O, Chortos A, Khatib O, Bao Z. A hierarchically patterned, bioinspired e-skin able to detect the direction of applied pressure for robotics. Sci Robot. 2018;3(24):36914–22.
Cao R, Pu X, Du X, Yang W, Wang J, Guo H, Zhao S, Yuan Z, Zhang C, Li C, Wang ZL. Screen-printed washable electronic textiles as self-powered touch/gesture tribo-sensors for intelligent human-machine interaction. ACS Nano. 2018;12(6):5190–6.
Kim KK, Suh Y, Ko SH. Smart stretchable electronics for advanced human-machine interface. Adv Intell Syst. 2020;3(2):2000157–70.
Cao X, Xiong Y, Sun J, Zhu X, Sun Q, Wang ZL. Piezoelectric nanogenerators derived self-powered sensors for multifunctional applications and artificial intelligence. Adv Funct Mater. 2021;31(33):2102983–3014.
Massari L, Fransvea G, D’Abbraccio J, Filosa M, Terruso G, Aliperta A, D’Alesio G, Zaltieri M, Schena E, Palermo E, Sinibaldi E, Oddo CM. Functional mimicry of Ruffini receptors with fiber Bragg gratings and deep neural networks enables a bio-inspired large-area tactile-sensitive skin. Nat Mach Intell. 2022;4(5):425–35.
Shi Z, Meng L, Shi X, Li H, Zhang J, Sun Q, Liu X, Chen J, Liu S. Morphological engineering of sensing materials for flexible pressure sensors and artificial intelligence applications. Nano-micro Lett. 2022;14(1):141–88.
Karthik PE, Rajan H, Jothi VR, Sang BI, Yi SC. Electronic wastes: a near inexhaustible and an unimaginably wealthy resource for water splitting electrocatalysts. J Hazard Mater. 2022;42:126687–706.
Li W, Liu Q, Zhang Y, Li C, He Z, Choy WCH, Low PJ, Sonar P, Kyaw AKK. Biodegradable materials and green processing for green electronics. Adv Mater. 2020;32(33):2001591–630.
Andrade DF, Castro JP, Garcia JA, Machado RC, Pereira-Filho ER, Amarasiriwardena D. Analytical and reclamation technologies for identification and recycling of precious materials from waste computer and mobile phones. Chemosphere. 2022;286(2):131739–52.
Mishra S, Panda S, Akcil A, Dembele S, Agcasulu I. A review on chemical versus microbial leaching of electronic wastes with emphasis on base metals dissolution. Minerals. 2021;11(11):1255–80.
Hosseini ES, Dervin S, Ganguly P, Dahiya R. Biodegradable materials for sustainable health monitoring devices. ACS Appl Bio Mater. 2021;4(1):63–194.
Hosseini ES, Manjakkal L, Shakthivel D, Dahiya R. Glycine-chitosan-based flexible biodegradable piezoelectric pressure sensor. ACS Appl Mater Interfaces. 2020;12(8):9008–16.
Irimia-Vladu M. “Green” electronics: biodegradable and biocompatible materials and devices for sustainable future. Chem Soc Rev. 2014;43(2):588–610.
Huang W, Ling S, Li C, Omenetto FG, Kaplan DL. Silkworm silk-based materials and devices generated using bio-nanotechnology. Chem Soc Rev. 2018;47(17):6486–504.
Hou C, Xu Z, Qiu W, Wu R, Wang Y, Xu Q, Liu XY, Guo W. A biodegradable and stretchable protein-based sensor as artificial electronic skin for human motion detection. Small. 2019;15(11):1805084–91.
Zhu B, Wang H, Leow WR, Cai Y, Loh XJ, Han MY, Chen X. Silk fibroin for flexible electronic devices. Adv Mater. 2016;28(22):4250–65.
Chen G, Matsuhisa N, Liu Z, Qi D, Cai P, Jiang Y, Wan C, Cui Y, Leow WR, Liu Z, Gong S, Zhang KQ, Cheng Y, Chen X. Plasticizing silk protein for on-skin stretchable electrodes. Adv Mater. 2018;30(21):1800129–35.
Wang Q, Jian M, Wang C, Zhang Y. Carbonized silk nanofiber membrane for transparent and sensitive electronic skin. Adv Funct Mater. 2017;27(9):1605657–65.
Li D, Fan Y, Han G, Guo Z. Superomniphobic silk fibroin/Ag nanowires membrane for flexible and transparent electronic sensor. ACS Appl Mater Interfaces. 2020;12(8):10039–49.
Wu R, Ma L, Hou C, Meng Z, Guo W, Yu W, Yu R, Hu F, Liu XY. Silk composite electronic textile sensor for high space precision 2D combo temperature-pressure sensing. Small. 2019;15(31):1901558–68.
Liu X, Liu J, Wang J, Wang T, Jiang Y, Hu J, Liu Z, Chen X, Yu J. Bioinspired, microstructured silk fibroin adhesives for flexible skin sensors. ACS Appl Mater Interfaces. 2020;12(5):5601–9.
Wu F, Li J, Su Y, Wang J, Yang W, Li N, Chen L, Chen S, Chen R, Bao L. Layer-by-layer assembled architecture of polyelectrolyte multilayers and graphene sheets on hollow carbon spheres/sulfur composite for high-performance lithium-sulfur batteries. Nano Lett. 2016;16(9):5488–94.
Dudem B, Dharmasena RDIG, Graham SA, Leem JW, Patnam H, Mule AR, Silva SRP, Yu JS. Exploring the theoretical and experimental optimization of high-performance triboelectric nanogenerators using microarchitectured silk cocoon films. Nano Energy. 2020;74:104882–96.
Hu X, Kaplan D, Cebe P. Determining beta-sheet crystallinity in fibrous proteins by thermal analysis and infrared spectroscopy. Macromolecules. 2006;39(18):6161–70.
Cao J, Wang C. Highly conductive and flexible silk fabric via electrostatic self-assemble between reduced graphene oxide and polyaniline. Org Electron. 2018;55:26–34.
Wang L, Lu C, Zhang B, Zhao B, Wu F, Guan S. Fabrication and characterization of flexible silk fibroin films reinforced with graphene oxide for biomedical applications. RSC Adv. 2014;4(76):40312–20.
Wang Q, Ling S, Yao Q, Li Q, Hu D, Dai Q, Weitz DA, Kaplan DL, Buehler MJ, Zhang Y. Observations of 3 nm silk nanofibrils exfoliated from natural silkworm silk fibers. ACS Mater Lett. 2020;2(2):153–60.
Yin Z, Liang X, Zhou K, Li S, Lu H, Zhang M, Wang H, Xu Z, Zhang Y. Biomimetic mechanically enhanced carbon nanotube fibers by silk fibroin infiltration. Small. 2021;17(19):2100066–72.
Nakao F, Takenaka Y, Asai H. Surface characterization of carbon fibres and interfacial properties of carbon fibre composites. Composites. 1992;23(5):365–342.
Zulan L, Zhi L, Lan C, Sihao C, Dayang W, Fangyin D. Reduced graphene oxide coated silk fabrics with conductive property for wearable electronic textiles application. Adv Electron Mater. 2019;5(4):1800648–56.
Smiley RJ, Delgass WN. AFM, SEM and XPS characterization of PAN-based carbon fibres etched in oxygen plasmas. J Mater Sci. 1993;28(13):3601–11.