Deformation induced hardening when cryogenic turning,

Patrick Mayer1, Benjamin Kirsch1, Christopher Müller1, Hendrik Hotz1, Ralf Müller2, Steven Becker2, Erik von Harbou3, Robert Skorupski4, Annika Boemke4, Marek Smaga4, Dietmar Eifler4, Tilmann Beck4, Jan C. Aurich1
1Institute for Manufacturing Technology and Production Systems, University of Kaiserslautern, Gottlieb-Daimler-Str. Geb. 42, 67663 Kaiserslautern, Germany
2Institute of Applied Mechanics, University of Kaiserslautern, Gottlieb-Daimler-Str. Geb. 44, 67663 Kaiserslautern, Germany
3Laboratory of Engineering Thermodynamics, University of Kaiserslautern, Gottlieb-Daimler-Str. Geb. 44, 67663 Kaiserslautern, Germany
4Institute of Materials Science and Engineering, University of Kaiserslautern, Gottlieb-Daimler-Str. Geb. 44, 67663 Kaiserslautern, Germany

Tài liệu tham khảo

Aurich, J.C., Schneider, F., Mayer, P., Kirsch, B., Hasse, H., 2016. Oberflächenerzeugungs-Morphologie-Eigenschafts-Beziehungen −Vom Fertigungsverfahren direkt zu den Bauteileigenschaften. ZWF − Zeitschrift für wirtschaftlichen Fabrikbetrieb 111/4, 213–216. Brinksmeier, 2008, Surface Hardening by Strain Induced Martensitic Transformation, Production Engineering — Research and Development, 2/2, 109, 10.1007/s11740-007-0060-6 Meyer, 2012, Cryogenic Deep Rolling—an Energy Based Approach for Enhanced Cold Surface Hardening, CIRP Annals — Manufacturing Science and Technology, 61/1, 543, 10.1016/j.cirp.2012.03.102 Brinksmeier, 2008, Cold Surface Hardening, CIRP Annals — Manufacturing Science and Technology, 57/1, 541, 10.1016/j.cirp.2008.03.100 Abele, 2008, Using PCD for Machining CGI with a CO2 Coolant System, Production Engineering — Research and Development, 2/2, 165, 10.1007/s11740-008-0104-6 Jayal, 2010, Sustainable Manufacturing: Modeling and Optimization Challenges at the Product, Process and System Levels, CIRP Journal of Manufacturing Science and Technology, 2/3, 144, 10.1016/j.cirpj.2010.03.006 Umbrello, 2011, The Effects of Cryogenic Cooling on Surface Integrity in Hard Machining, Procedia Engineering, 19, 371, 10.1016/j.proeng.2011.11.127 Dhokia, 2012, Effects of Cryogenic Cooling on the Surface Quality and Tool Wear in End-milling 6061-T6 Aluminium, 22nd International Conference on Flexible Automation and Intelligent Manufacturing Biermann, 2012, Reduction of Burr Formation in Drilling Using Cryogenic Process Cooling, Procedia Engineering, 3, 85 Karpuschewski, 2013, Cryogenic Wet-ice Blasting −process Conditions and Possibilities, CIRP Annals — Manufacturing Technology, 1, 319, 10.1016/j.cirp.2013.03.102 Mayer, 2014, Deformation Induced Surface Hardening When Turning Metastable Austenitic Steel AISI 347 with Different Cryogenic Cooling Strategies, Procedia CIRP, 14, 101, 10.1016/j.procir.2014.03.097 Aurich, 2014, Characterization of deformation induced surface hardening during cryogenic turning of AISI 347, CIRP Annals — Manufacturing Technology, 63/1, 65, 10.1016/j.cirp.2014.03.079 Mayer, 2016, Influence of Cutting Edge Geometry on Deformation Induced Hardening When Cryogenic Turning of Metastable Austenitic Stainless Steel AISI 347, Procedia CIRP, 45, 59, 10.1016/j.procir.2016.02.148 Frölich, 2015, Investigation of Wear Resistance of Dry and Cryogenic Turned Metastable Austenitic Steel Shafts and Dry Turned and Ground Carburized Steel Shafts in the Radial Shaft Seal Ring System, Wear, 328-329, 123, 10.1016/j.wear.2015.02.004 Skorupski, 2014, Influence of Surface Morphology on the Fatigue Behavior of Metastable Austenitic Steel, Advances in Materials Research, 891-892, 464, 10.4028/www.scientific.net/AMR.891-892.464 Biermann, D., Kahleyß, F., Heilmann, M., 2007. Bohren mit CO2-Prozesskühlung. VDI-Z Integrierte Produktion 19/7-8, 78-80. Siebertz, 2010 Garbrecht, 2006, Mechanisches Randschichthärten Schmidt, 1999, Mechanische und thermische Wirkungen beim Drehen Talonen, 2004, Comparison of different methods for measuring strain induced α′-martensite content in austenitic steels, Materials Science and Technology, 20, 1506, 10.1179/026708304X4367 Young, 1993, The Rietveld method van den Boomgard, 1992, Methods for Fast Morphological Image Transforms Using Bitmapped Images, CVGIP: Graphical Models And Image Processing, 54/3, 252 Canny, 1986, A Computational Approach to Edge Detection, IEEE Transactions on Pattern Analysis and Machine Intelligence, 8/6, 679, 10.1109/TPAMI.1986.4767851 Eichelmann, 1953, The Effect of Composition on the Temperature of Spontaneous Transformation of Austenite to Martensite in 18-8-Type Stainless Steel, Transactions AME, 45, 77 Angel, 1954, Formation of Martensite in Austenitic Stainless Steels − Effects of Deformation, Temperature, and Composition, Journal of the Iron and Steel Institute, 177/1, 165 Brinksmeier, 1982, Residual Stresses −Measurement and Causes in Machining Processes, CIRP Annals — Manufacturing Technolog, 2, 491, 10.1016/S0007-8506(07)60172-3 Outeiro, 2008, Analysis of Residual Stresses Induced by Dry Turning of Difficult-to-machine Materials, CIRP Annals — Manufacturing Technolog, 57/1, 77, 10.1016/j.cirp.2008.03.076 Outeiro, 2006, On th Effect of Residual Stresses Induced by Coated and Uncoated Cutting Tools with Finite Edge Radii in Turning Operations, CIRP Annals — Manufacturing Technolog, 55/1, 111, 10.1016/S0007-8506(07)60378-3 Valiorgue, 2012, 3D Modeling of Residual Stresses Induced in Finish Turning of an AISI304L Stainless Steel, International Journal of Machine Tools and Manufacture, 53, 77, 10.1016/j.ijmachtools.2011.09.011 Navas, 2012, Effect of Cutting Parameters in the Surface Residual Stresses Generated by Turning an AISI 4340 Steel, International Journal of Machine Tools and Manufacture, 61, 48, 10.1016/j.ijmachtools.2012.05.008 Matsumoto, 1999, Surface Integrity Generated by Precision Hard Turning, CIRP Annals — Manufacturing Technolog, 48/1, 59, 10.1016/S0007-8506(07)63131-X Smaga, 2017, Microstructural Characterization of Cyclic Deformation Behavior of Metastable Austenitic Stainless Steel AISI 347 with Different Surface Morphology, Journal of Materials Research, 32/23, 4452, 10.1557/jmr.2017.318 Boemke, 2018, Influence of Surface Morphology on the Very High Cycle Fatigue Behavior of Metastable and Stable Austenitic Cr-Nisteels, MATEC Web of Conferences, 165, 20008, 10.1051/matecconf/201816520008 Brammertz, 1961, Die Entstehung der Oberflächenrauheit beim Feindrehen, Industrie-Anzeiger Essen, 2, 25 Klocke, 2008 Hong, 2001, Economical and Ecological Cryogenic Machining, Journal of Manufacturing Science and Engineering, 123/2, 331, 10.1115/1.1315297 Becker, 2016, Transient Finite Element Simulation of the Temperature Field During Cryogenic Turning of Metastable Austenitic Steel AISI 347, Proceedings in Applied Mathematics and Mechanics, 16/1, 303, 10.1002/pamm.201610140 Becker, 2017, Estimation of Heat Transfer Properties for the Fe Simulation of Cryogenic Turning, Proceedings in Applied Mathematics and Mechanics, 17/1, 401, 10.1002/pamm.201710170 Becker, 2018, A Finite Element Approach to Calculate Temperatures Arising During Cryogenic Turning of Metastable Austenitic Steel AISI 347, ASME Journal of Manufacturing Science and Engineering, 140/10, 101016, 10.1115/1.4040778 Granta − Material Intelligence, 2010. CES EDUPACK 2010.