Deformation induced hardening when cryogenic turning,
Tài liệu tham khảo
Aurich, J.C., Schneider, F., Mayer, P., Kirsch, B., Hasse, H., 2016. Oberflächenerzeugungs-Morphologie-Eigenschafts-Beziehungen −Vom Fertigungsverfahren direkt zu den Bauteileigenschaften. ZWF − Zeitschrift für wirtschaftlichen Fabrikbetrieb 111/4, 213–216.
Brinksmeier, 2008, Surface Hardening by Strain Induced Martensitic Transformation, Production Engineering — Research and Development, 2/2, 109, 10.1007/s11740-007-0060-6
Meyer, 2012, Cryogenic Deep Rolling—an Energy Based Approach for Enhanced Cold Surface Hardening, CIRP Annals — Manufacturing Science and Technology, 61/1, 543, 10.1016/j.cirp.2012.03.102
Brinksmeier, 2008, Cold Surface Hardening, CIRP Annals — Manufacturing Science and Technology, 57/1, 541, 10.1016/j.cirp.2008.03.100
Abele, 2008, Using PCD for Machining CGI with a CO2 Coolant System, Production Engineering — Research and Development, 2/2, 165, 10.1007/s11740-008-0104-6
Jayal, 2010, Sustainable Manufacturing: Modeling and Optimization Challenges at the Product, Process and System Levels, CIRP Journal of Manufacturing Science and Technology, 2/3, 144, 10.1016/j.cirpj.2010.03.006
Umbrello, 2011, The Effects of Cryogenic Cooling on Surface Integrity in Hard Machining, Procedia Engineering, 19, 371, 10.1016/j.proeng.2011.11.127
Dhokia, 2012, Effects of Cryogenic Cooling on the Surface Quality and Tool Wear in End-milling 6061-T6 Aluminium, 22nd International Conference on Flexible Automation and Intelligent Manufacturing
Biermann, 2012, Reduction of Burr Formation in Drilling Using Cryogenic Process Cooling, Procedia Engineering, 3, 85
Karpuschewski, 2013, Cryogenic Wet-ice Blasting −process Conditions and Possibilities, CIRP Annals — Manufacturing Technology, 1, 319, 10.1016/j.cirp.2013.03.102
Mayer, 2014, Deformation Induced Surface Hardening When Turning Metastable Austenitic Steel AISI 347 with Different Cryogenic Cooling Strategies, Procedia CIRP, 14, 101, 10.1016/j.procir.2014.03.097
Aurich, 2014, Characterization of deformation induced surface hardening during cryogenic turning of AISI 347, CIRP Annals — Manufacturing Technology, 63/1, 65, 10.1016/j.cirp.2014.03.079
Mayer, 2016, Influence of Cutting Edge Geometry on Deformation Induced Hardening When Cryogenic Turning of Metastable Austenitic Stainless Steel AISI 347, Procedia CIRP, 45, 59, 10.1016/j.procir.2016.02.148
Frölich, 2015, Investigation of Wear Resistance of Dry and Cryogenic Turned Metastable Austenitic Steel Shafts and Dry Turned and Ground Carburized Steel Shafts in the Radial Shaft Seal Ring System, Wear, 328-329, 123, 10.1016/j.wear.2015.02.004
Skorupski, 2014, Influence of Surface Morphology on the Fatigue Behavior of Metastable Austenitic Steel, Advances in Materials Research, 891-892, 464, 10.4028/www.scientific.net/AMR.891-892.464
Biermann, D., Kahleyß, F., Heilmann, M., 2007. Bohren mit CO2-Prozesskühlung. VDI-Z Integrierte Produktion 19/7-8, 78-80.
Siebertz, 2010
Garbrecht, 2006, Mechanisches Randschichthärten
Schmidt, 1999, Mechanische und thermische Wirkungen beim Drehen
Talonen, 2004, Comparison of different methods for measuring strain induced α′-martensite content in austenitic steels, Materials Science and Technology, 20, 1506, 10.1179/026708304X4367
Young, 1993, The Rietveld method
van den Boomgard, 1992, Methods for Fast Morphological Image Transforms Using Bitmapped Images, CVGIP: Graphical Models And Image Processing, 54/3, 252
Canny, 1986, A Computational Approach to Edge Detection, IEEE Transactions on Pattern Analysis and Machine Intelligence, 8/6, 679, 10.1109/TPAMI.1986.4767851
Eichelmann, 1953, The Effect of Composition on the Temperature of Spontaneous Transformation of Austenite to Martensite in 18-8-Type Stainless Steel, Transactions AME, 45, 77
Angel, 1954, Formation of Martensite in Austenitic Stainless Steels − Effects of Deformation, Temperature, and Composition, Journal of the Iron and Steel Institute, 177/1, 165
Brinksmeier, 1982, Residual Stresses −Measurement and Causes in Machining Processes, CIRP Annals — Manufacturing Technolog, 2, 491, 10.1016/S0007-8506(07)60172-3
Outeiro, 2008, Analysis of Residual Stresses Induced by Dry Turning of Difficult-to-machine Materials, CIRP Annals — Manufacturing Technolog, 57/1, 77, 10.1016/j.cirp.2008.03.076
Outeiro, 2006, On th Effect of Residual Stresses Induced by Coated and Uncoated Cutting Tools with Finite Edge Radii in Turning Operations, CIRP Annals — Manufacturing Technolog, 55/1, 111, 10.1016/S0007-8506(07)60378-3
Valiorgue, 2012, 3D Modeling of Residual Stresses Induced in Finish Turning of an AISI304L Stainless Steel, International Journal of Machine Tools and Manufacture, 53, 77, 10.1016/j.ijmachtools.2011.09.011
Navas, 2012, Effect of Cutting Parameters in the Surface Residual Stresses Generated by Turning an AISI 4340 Steel, International Journal of Machine Tools and Manufacture, 61, 48, 10.1016/j.ijmachtools.2012.05.008
Matsumoto, 1999, Surface Integrity Generated by Precision Hard Turning, CIRP Annals — Manufacturing Technolog, 48/1, 59, 10.1016/S0007-8506(07)63131-X
Smaga, 2017, Microstructural Characterization of Cyclic Deformation Behavior of Metastable Austenitic Stainless Steel AISI 347 with Different Surface Morphology, Journal of Materials Research, 32/23, 4452, 10.1557/jmr.2017.318
Boemke, 2018, Influence of Surface Morphology on the Very High Cycle Fatigue Behavior of Metastable and Stable Austenitic Cr-Nisteels, MATEC Web of Conferences, 165, 20008, 10.1051/matecconf/201816520008
Brammertz, 1961, Die Entstehung der Oberflächenrauheit beim Feindrehen, Industrie-Anzeiger Essen, 2, 25
Klocke, 2008
Hong, 2001, Economical and Ecological Cryogenic Machining, Journal of Manufacturing Science and Engineering, 123/2, 331, 10.1115/1.1315297
Becker, 2016, Transient Finite Element Simulation of the Temperature Field During Cryogenic Turning of Metastable Austenitic Steel AISI 347, Proceedings in Applied Mathematics and Mechanics, 16/1, 303, 10.1002/pamm.201610140
Becker, 2017, Estimation of Heat Transfer Properties for the Fe Simulation of Cryogenic Turning, Proceedings in Applied Mathematics and Mechanics, 17/1, 401, 10.1002/pamm.201710170
Becker, 2018, A Finite Element Approach to Calculate Temperatures Arising During Cryogenic Turning of Metastable Austenitic Steel AISI 347, ASME Journal of Manufacturing Science and Engineering, 140/10, 101016, 10.1115/1.4040778
Granta − Material Intelligence, 2010. CES EDUPACK 2010.