Deformation and failure of Zr57Nb5Al10Cu15.4Ni12.6/W particle composites under quasi-static and dynamic compression
Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science - Tập 35 - Trang 3439-3444 - 2004
Tóm tắt
We have investigated the mechanical behavior of a composite material consisting of a Zr57Nb5Al10Cu15.4Ni12.6 metallic glass matrix with 60 vol pct tungsten particles under uniaxial compression over a range of strain rates from 10−4 to 104 s−1. In contrast to the behavior of single-phase metallic glasses, the failure strength of the composite increases with increasing strain rate. The composite shows substantially greater plastic deformation than the unreinforced glass under both quasi-static and dynamic loading. Under quasi-static loading, the composite specimens do not fail even at nominal plastic strains in excess of 30 pct. Under dynamic loading, fracture of the composite specimens is induced by shear bands at plastic strains of approximately 20 to 30 pct. We observed evidence of shear localization in the composite on two distinct length scales. Multiple shear bands with thicknesses less than 1 µm form under both quasi-static and dynamic loading. The large plastic deformation developed in the composite specimens is due to the ability of the tungsten particles both to initiate these shear bands and to restrict their propagation. In addition, the dynamic specimens also show shear bands with thicknesses on the order of 50 µm; the tungsten particles inside these shear bands are extensively deformed. We propose that thermal softening of the tungsten particles results in a lowered constraint for shear band development, leading to earlier failure under dynamic loading.
Tài liệu tham khảo
C.A. Pampillo: J. Mater. Sci., 1975, vol. 10, pp. 1194–1227.
C.C. Hays, C.P. Kim, and W.L. Johnson: Phys. Rev. Lett., 2000, vol. 84, pp. 2901–04.
H. Tan, Y. Zhang, Y.P. Feng, and Y. Li: Phil. Mag. Lett., 2004, vol. 84, pp. 53–61.
C. Fan, R.T. Ott, and T.C. Hufnagel: Appl. Phys. Lett., 2002, vol. 81, pp. 1020–22.
F. Szuecs, C.P. Kim, and W.L. Johnson: Acta Mater., 2001, vol. 49, pp. 1507–13.
H. Choi-Yim, R.D. Conner, F. Szuecs, and W.L. Johnson: Acta Mater., 2002, vol. 50, pp. 2737–45.
G. He, W. Löser, J. Eckert, and L. Schultz: J. Mater. Res., 2002, vol. 17, pp. 3105–08.
M. Calin, J. Eckert, and L. Schultz: Scripta Mater., 2003, vol. 48, pp. 653–58.
H. Choi-Yim and W.L. Johnson: Appl. Phys. Lett., 1997, vol. 71, pp. 3808–10.
H. Choi-Yim, R. Busch, U. Köster, and W.L. Johnson: Acta Mater., 1999, vol. 47, pp. 2455–62.
R.D. Conner, H. Choi-Yim, and W.L. Johnson: J. Mater. Res., 1999, vol. 14, pp. 3292–97.
H. Choi-Yim, R.D. Conner, F. Szuecs, and W.L. Johnson: Scripta Mater., 2001, vol. 45, pp. 1039–45.
H. Choi-Yim, J. Schroers, and W.L. Johnson: Appl. Phys. Lett., 2002, vol. 80, pp. 1906–08.
R.D. Conner, R.B. Dandliker, V. Scruggs, and W.L. Johnson: Int. J. Imp. Eng., 2000, vol. 24, pp. 435–44.
T.C. Hufnagel, T. Jiao, Y. Li, L. Q. Xing, and K.T. Ramesh: J. Mater. Res., 2002, vol. 17, pp. 1441–45.
R.B. Dandliker, R.D. Conner, and W.L. Johnson: J. Mater. Res., 1998, vol. 13, pp. 2896–2901.
S.C. Glade, R. Busch, D.S. Lee, W.L. Johnson, R.K. Wunderlich, and H.-J. Fecht: J. Appl. Phys., 2000, vol. 87, pp. 7242–48.
ASTM Committee E28 on Mechanical Testing: E9-89a, Standard Test Methods of Compression Testing of Metallic Materials at Room Temperature: Annual Book of ASTM Standards, Volume 03.01, ASTM International, West Conshohocken, PA, 2000, pp. 104–11.
T. Jiao, C. Fan, L.J. Kecskes, T.C. Hufnagel, and K.T. Ramesh: MRS Symp. Proc., 2003, vol. 754, pp. CC6.2.1-CC6.2.6.
P.S. Follansbee: ASM Handbook, vol. 8, Mechanical Testing, ASM INTERNATIONAL, Metals Park, OH, 1985, pp. 198–203.
W. Chen and G. Ravichandran: Int. J. Fract., 2000, vol. 101, pp. 141–59.
R.S. Coates and K.T. Ramesh: Mater. Sci. Eng., 1991, vol. 145A, pp. 159–66.
X. Gu, T. Jiao, L.J. Kecskes, R.H. Woodman, C. Fan, K.T. Ramesh, and T.C. Hufnagel: J. Non-Cryst. Sol., 2003, vol. 317, pp. 112–17.
H. Li, G. Subhash, X.-L. Gao, L.J. Kecskes, and R.J. Dowding: Scripta Mater., 2003, vol. 49, pp. 1087–92.
T. Mukai, T.G. Nieh, Y. Kawamura, A. Inoue, and K. Higashi: Intermetallics, 2002, vol. 10, pp. 1071–77.
T. Dümmer, J.C. LaSalvia, G. Ravichandran, and M.A. Meyers: Acta Mater., 1998, vol. 46, pp. 6267–90.
P.E. Donovan and W.M. Stobbs: Acta Mater., 1981, vol. 29, pp. 1419–36.
J. Li, F. Spaepen, and T.C. Hufnagel: Phil. Mag. A, 2002, vol. 82, pp. 2623–30.
M. Zhou and R.J. Clifton: J. Appl. Mech., 1997, vol. 64, pp. 487–94.
M. Zhou: Int. J. Plasticity, 1998, vol. 14, pp. 733–54.
A.M. Lennon and K.T. Ramesh: Mater. Sci. Eng. A, 2000, vol. 276, pp. 9–21.
Y. Bai and B. Dodd: Adiabatic Shear Localization, Pergamon Press, Oxford, United Kingdom, 1989.
J. Lu, G. Ravichandran, and W.L. Johnson: Acta Mater., 2003, vol. 51, pp. 3429–43.