Deformation and Locomotion of Untethered Small-Scale Magnetic Soft Robotic Turtle with Programmable Magnetization
Journal of Bionic Engineering - Trang 1-10 - 2024
Tóm tắt
Inspired by the way sea turtles rely on the Earth’s magnetic field for navigation and locomotion, a novel magnetic soft robotic turtle with programmable magnetization has been developed and investigated to achieve biomimetic locomotion patterns such as straight-line swimming and turning swimming. The soft robotic turtle (12.50 mm in length and 0.24 g in weight) is integrated with an Ecoflex-based torso and four magnetically programmed acrylic elastomer VHB-based limbs containing samarium-iron–nitrogen particles, and was able to carry a load more than twice its own weight. Similar to the limb locomotion characteristics of sea turtles, the magnetic torque causes the four limbs to mimic sinusoidal bending deformation under the influence of an external magnetic field, so that the turtle swims continuously forward. Significantly, when the bending deformation magnitudes of its left and right limbs differ, the soft robotic turtle switches from straight-line to turning swimming at 6.334 rad/s. Furthermore, the tracking swimming activities of the soft robotic turtle along specific planned paths, such as square-shaped, S-shaped, and double U-shaped maze, is anticipated to be utilized for special detection and targeted drug delivery, among other applications owing to its superior remote directional control ability.
Tài liệu tham khảo
Lee, K. Y., Park, S. J., Matthews, D. G., Kim, S. L., Marquez, C. A., Zimmerman, J. F., Ardoña, H. A. M., Kleber, A. G., Lauder, G. V., & Parker, K. K. (2022). An autonomously swimming biohybrid fish designed with human cardiac biophysics. Science, 375, 639–647.
Usevitch, N. S., Hammond, Z. M., Schwager, M., Okamura, A. M., Hawkes, E. W., & Follmer, S. (2020). An untethered isoperimetric soft robot. Science Robotics, 5, eaaz0492.
Chang, L., Wang, D., Huang, Z., Wang, C., Torop, J., Li, B., Wang, Y., Hu, Y., & Aabloo, A. (2022). A versatile ionomer-based soft actuator with multi-stimulus responses, self-sustainable locomotion, and photoelectric conversion. Advanced Functional Materials, 33, 2212341.
Zhang, S., Ke, X., Jiang, Q., Ding, H., & Wu, Z. (2021). Programmable and reprocessable multifunctional elastomeric sheets for soft origami robots. Science Robotics, 6, eabd6107.
Wang, Y., Yang, Z., Zhou, H., Zhao, C., Barimah, B., Li, B., Xiang, C., Li, L., Gou, X., & Luo, M. (2022). Inflatable particle-jammed robotic gripper based on integration of positive pressure and partial filling. Soft Robotics, 9, 309–323.
Zhao, Q., Liang, Y. H., Ren, L., Zhang, Z. H., & Ren, L. Q. (2018). Bionic intelligent hydrogel actuators with multimodal deformation and locomotion. Nano Energy, 51, 621–631.
Cheng, Z., Feng, W., Zhang, Y., Sun, L., Liu, Y., Chen, L., & Wang, C. (2023). A highly robust amphibious soft robot with imperceptibility based on a water-stable and self-healing ionic conductor. Advanced Materials, 35, e2301005.
Ahmed, F., Waqas, M., Shaikh, B., Khan, U., Soomro, A. M., Kumar, S., Ashraf, H., Memon, F. H., & Choi, K. H. (2022). Multi-material bio-inspired soft octopus robot for underwater synchronous swimming. Journal of Bionic Engineering, 19, 1229–1241.
Li, Q., Zhang, F., Jing, Z., Yu, F., & Chen, Y. (2023). A hybrid territorial aquatic bionic soft robot with controllable transition capability. Journal of Bionic Engineering, 20, 568–583.
Yang, X., Chen, Y., Zhang, X., Xue, P., Lv, P., Yang, Y., Wang, L., & Feng, W. (2022). Bioinspired light-fueled water-walking soft robots based on liquid crystal network actuators with polymerizable miniaturized gold nanorods. Nano Today, 43, 101419.
Zhou, A., Xu, C., Kanitthamniyom, P., Ng, C. S. X., Lim, G. J., Lew, W. S., Vasoo, S., Zhang, X., Lum, G. Z., & Zhang, Y. (2022). Magnetic soft millirobots 3d printed by circulating vat photopolymerization to manipulate droplets containing hazardous agents for in vitro diagnostics. Advanced Materials, 34, e2200061.
Ren, Z., Zhang, R., Soon, R. H., Liu, Z., Hu, W., Onck, P. R., & Sitti, M. (2021). Soft-bodied adaptive multimodal locomotion strategies in fluid-filled confined spaces. Science Advances, 7, eabh2022.
Chen, R., Yuan, Z., Guo, J., Bai, L., Zhu, X., Liu, F., Pu, H., Xin, L., Peng, Y., Luo, J., Wen, L., & Sun, Y. (2021). Legless soft robots capable of rapid, continuous, and steered jumping. Nature Communications, 12, 7028.
Mei, D., Zhao, X., Tang, G., Wang, J., Zhao, C., Li, C., & Wang, Y. (2022). A single-joint worm-like robot inspired by geomagnetic navigation. Machines, 10, 1040.
Brothers, J. R., & Lohmann, K. J. (2015). Evidence for geomagnetic imprinting and magnetic navigation in the natal homing of sea turtles. Current Biology, 25, 392–396.
Lohmann, K. J., Lohmann, C. M. F., Ehrhart, L. M., Bagley, D. A., & Swing, T. (2004). Geomagnetic map used in sea-turtle navigation. Nature, 428, 909–910.
Phillips, J. B., & Diego-Rasilla, F. J. (2022). The amphibian magnetic sense(s). Journal of Comparative Physiology A, 208, 723–742.
Lohmann, K. J., Goforth, K. M., Mackiewicz, A. G., Lim, D. S., & Lohmann, C. M. F. (2022). Magnetic maps in animal navigation. Journal of Comparative Physiology A, 208, 1–27.
Lohmann, K., Lohmann, C., Brothers, J. R., & Putman, N. (2013). Natal homing and imprinting in sea turtles. The Biology of Sea Turtles, III, 20.
Endres, C. S., Putman, N. F., Ernst, D. A., Kurth, J. A., Lohmann, C. M., & Lohmann, K. J. (2016). Multi-modal homing in sea turtles: Modeling dual use of geomagnetic and chemical cues in island-finding. Frontiers in Behavioral Neuroscience, 10, 19.
Baines, R., Patiballa, S. K., Booth, J., Ramirez, L., Sipple, T., Garcia, A., Fish, F., & Kramer-Bottiglio, R. (2022). Multi-environment robotic transitions through adaptive morphogenesis. Nature, 610, 283–289.
Shi, L., Guo, S., Mao, S., Yue, C., Li, M., & Asaka, K. (2013). Development of an amphibious turtle-inspired spherical mother robot. Journal of Bionic Engineering, 10, 446–455.
Xing, H., Guo, S., Shi, L., Hou, X., Liu, Y., Liu, H., Hu, Y., Xia, D., & Li, Z. (2019). A novel small-scale turtle-inspired amphibious spherical robot. 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems, 6, 1702–1707.
Sitti, M., & Wiersma, D. S. (2020). Pros and cons: Magnetic versus optical microrobots. Advanced Materials, 32, e1906766.
Kim, Y., & Zhao, X. (2022). Magnetic soft materials and robots. Chemical Reviews, 122, 5317–5364.
Wang, Y., Chen, H., Law, J., Du, X., & Yu, J. (2023). Ultrafast miniature robotic swimmers with upstream motility. Cyborg and Bionic Systems, 4, 0015.
Zhang, X., Chen, G., Fu, X., Wang, Y., & Zhao, Y. (2021). Magneto-responsive microneedle robots for intestinal macromolecule delivery. Advanced Materials, 33, e2104932.
Kim, Y., Parada, G. A., Liu, S., & Zhao, X. (2019). Ferromagnetic soft continuum robots. Science Robotics, 4, eaax7329.
Hao, Y., Zhang, S., Fang, B., Sun, F., Liu, H., & Li, H. (2022). A review of smart materials for the boost of soft actuators, soft sensors, and robotics applications. Chinese Journal of Mechanical Engineering, 35, 37.
Wang, B., Bustamante, R., Kari, L., Pang, H., & Gong, X. (2023). Modelling the influence of magnetic fields to the viscoelastic behaviour of soft magnetorheological elastomers under finite strains. International Journal of Plasticity, 164, 103578.
Alapan, Y., Karacakol, A. C., Guzelhan, S. N., Isik, I., & Sitti, M. (2020). Reprogrammable shape morphing of magnetic soft machines. Science Advances, 6, eabc6414.
Guan, Y., Liu, Y., Wang, Q., Geng, H., Cui, T., Hu, Y., Luo, Q., Li, A., Li, W., Lin, Y., Zhang, L., Liu, G., Fan, J., & Lan, Wu. (2023). Inchworm-inspired soft robot with magnetic driving based on PDMS, EGaIn and NdFeB (PEN) combination. Chemical Engineering Journal, 466, 142994.
Huang, C., Lai, Z., Wu, X., & Xu, T. (2022). Multimodal locomotion and cargo transportation of magnetically actuated quadruped soft microrobots. Cyborg and Bionic Systems, 2022, 0004.
Hu, W., Lum, G. Z., Mastrangeli, M., & Sitti, M. (2018). Small-scale soft-bodied robot with multimodal locomotion. Nature, 554, 81–85.
Liu, J. A., Gillen, J. H., Mishra, S. R., Evans, B. A., & Tracy, J. B. (2019). Photothermally and magnetically controlled reconfiguration of polymer composites for soft robotics. Science Advances, 5, eaaw2897.
Ansari, M. H. D., Iacovacci, V., Pane, S., Ourak, M., Borghesan, G., Tamadon, I., Poorten, E. V., & Menciassi, A. (2023). 3D printing of small-scale soft robots with programmable magnetization. Advanced Functional Materials, 33, 2211918.
Zhang, X., Chen, G., Fu, X., Wang, Y., & Zhao, Y. (2021). Magneto-responsive microneedle robots for intestinal macromolecule delivery. Advanced Materials, 33, 2104932.
Fu, S., Chen, B., Li, D., Han, J., Xu, S., Wang, S., Huang, C., Qiu, M., Cheng, S., Wu, X., Zhang, L., Du, S., & Xu, T. (2023). A Magnetically Controlled Guidewire Robot System with Steering and Propulsion Capabilities for Vascular Interventional Surgery. Advanced Intelligent Systems, 5, 2300267.