Deformation Characteristics of the Aerobraking Shell Material

Pleiades Publishing Ltd - Tập 2019 - Trang 1363-1368 - 2020
L. N. Rabinskii1, A. L. Medvedskii1, D. V. Nushtaev2, D. V. Lyskov1
1Moscow Aviation Institute (National Research University), Moscow, Russia
2OOO Tesis, Moscow, Russia

Tóm tắt

The deformation characteristics of silica fabric with a thermal barrier coating, which is used for the production of the ballute-type aerobrake of a descent module, are estimated. A rubberized fabric strip is subjected to uniaxial tensile tests to failure. Various finite-element simulation approaches to the deformation of the fabric are considered.

Tài liệu tham khảo

O. M. Alifanov, A. A. Ivanov, A. V. Netelev, and V. S. Finchenko, “Application of aeroelastic devices with flexible thermal protection for breaking apparatus in the planet atmosphere,” Teplov. Protsessy Tekhn. 3 (5), 230–240 (2014). L. V. Pankova, “Advanced technological possibilities in the space: synergetic effect,” in Proceedings of XXVIII Conference on Challenging Problems Development of the Russian Astronautics (Voina Mir, Moscow, 2004), pp. 173–174. V. S. Finchenko, “Thermal protection of additional ballute-type aerobrake of apparatus moving in atmosphere,” Teplov. Protsessy Tekhn. 1 (8), 343–348 (2009). B. A. Zemlyanskii, A. A. Ivankov, S. N. Ustinov, and V. S. Finchenko, “State of the art in the application of inflatable elements in aerospace engineering units, the use of ballute-type aerobrake in a descent module, and its thermal barrier coating,” Vestn. RFFI 57 (1), 37–63 (2008). A. L. Medvedskii, S. I. Zhavoronok, D. V. Nushtaev, and D. V. Lyskov, “Dynamics of opening of a thin elastic spherical shell,” in Proceedings of XXII International Conference on Dynamic and Technological Problems of the Mechanics of Structures and Continuum (OOO TRP, Moscow, 2017). A. L. Medvedskii, D. V. Nushtaev, and D. V. Lyskov, “Mathematical simulation of the opening of a transformed shell structure of a space descent module,” in Proceedings of Internal Forum on Engineering Systems (Moscow, 2017), pp. 17–18. S. V. Lomov, “Prediction of the structure and mechanical properties of technical fabrics by mathematical simulation methods,” Doctoral Dissertation in Engineering (St. Petersburg, 1995). P. Badel, E. Vidal-Salle, and P. Boisse, “Computational determination of in-plane shear mechanical behavior of textile composite reinforcements,” Comput. Mater. Sci. 40, 439–448. https://doi.org/10.1016/j.commatsci.2007.01.022 Abaqus User Manual. Version 6.14 (Dassault Systemes Simulia Corp., 2014). T. Belytschko, J. I. Lin, and C. S. Tkay, “Explicit algorithms for the nonlinear dynamics of shells,” Comput. Meth. Appl. Mech. Eng. 43, 251–276 (1984). A. C. Pipkin, “Continuously distributed wrinkles in fabrics,” Adv. RMA 95, 93–115 (1986). H. Lobo and J. A. Hurtado, “Characterization and modeling of non-linear behavior of plastics,” in Proceedings of Abaqus User’s Conference (2006), pp. 86–95.