Deforestation leads to prey shrinkage for an apex predator in a biodiversity hotspot
Mammal Research - 2021
Tóm tắt
Deforestation is a key driver of biodiversity reduction worldwide and impacts ecosystem functioning, ecological processes, and species behavior. Here, we investigated the effects of deforestation on the diet of puma (Puma concolor) in the Brazilian Atlantic Forest. We characterized puma diets in the largest continuous Atlantic Forest remnant and compiled literature data on their diet across the biome for comparison. We divided localities (N = 16) into two systems, namely, preserved areas (>40% forest cover) and human-modified landscapes (HMLs; <40%), and compared the diets in terms of percentage of occurrence, mean weight of mammalian prey (MWMP), and niche breadth. We classified prey according to their body mass (small- to large-sized) and partitioned the contribution of vertebrates (mammals, birds, reptiles, and fish) and mammalian prey (10 orders). The puma diets varied widely across the Atlantic Forest, with prey size decreasing from preserved areas to HMLs. As deforestation increased, the proportion of small-sized prey also increased, leading to a reduction in the MWMP. Niche breadth varied independently of the context or forest cover. Ungulates, large rodents, and xenarthrans were the main prey for pumas in preserved areas, while small rodents and birds accounted for 55% in HMLs. Ungulate predation increased with forest cover augmentation, with the opposite pattern observed for small rodents. The puma diet parameters in the Atlantic Forest and across Neotropical regions were similar, whereas both differed from that of North America, where large-sized prey was more consumed. Deforestation drove pumas to feed on smaller prey (<1 kg), thus highlighting that the effects of deforestation can be even larger and affect the assemblage trophic structure.
Từ khóa
Tài liệu tham khảo
Abra FD, Granziera BM, Huijser MP, Ferraz KMPMB, Haddad CM, Paolino RM (2019) Pay or prevent? Human safety, costs to society and legal perspectives on animal-vehicle collisions in São Paulo state, Brazil. PLoS One 14:e0215152
Arroyo-Rodríguez V, Fahrig L, Tabarelli M, Watling JI, Tischendorf L, Benchimol M, Cazetta E, Faria D, Leal IR, Melo FPL, Morante-Filho JC, Santos BA, Arasa-Gisbert R, Arce-Peña N, Cervantes-López MJ, Cudney-Valenzuela S, Galán-Acedo C, San-José M, Vieira ICG, Slik JWF, Nowakowski AJ, Tscharntke T (2020) Designing optimal human-modified landscapes for forest biodiversity conservation. Ecol Lett 23:1404–1420. https://doi.org/10.1111/ele.13535
Azevedo FC, Lemos FG, Freitas-Junior MC, et al (2020) The importance of forests for an apex predator: spatial ecology and habitat selection by pumas in an agroecosystem. Anim Conserv. https://doi.org/10.1111/acv.12659.
Bogoni JA, Peres CA, Ferraz KMPMB (2020) Extent, intensity and drivers of mammal defaunation: a continental-scale analysis across the Neotropics. Sci Rep 10:14750. https://doi.org/10.1038/s41598-020-72010-w
Bovendorp RS, Villar N, de Abreu-Junior EF, Bello C, Regolin AL, Percequillo AR, Galetti M (2017) Atlantic small-mammal: a dataset of communities of rodents and marsupials of the Atlantic forests of South America. Ecology 98:2226. https://doi.org/10.1002/ecy.1893
Bovo AAA, Magioli M, Percequillo AR et al (2018) Human-modified landscape acts as refuge for mammals in Atlantic Forest. Biota Neotrop 18:e20170395. https://doi.org/10.1590/1676-0611-BN-2017-0395
Branch LC, Pessino M, Villarreal D (1996) Response of pumas to a population decline of the plains Vizcacha. J Mammal 77:1132–1140. https://doi.org/10.2307/1382795
Brito BFA (2000) Ecologia alimentar da onça parda Puma concolor na Mata Atlântica de Linhares, Espírito Santo. Universidade de Brasília, Brasil
Chiarello AG (1999) Effects of fragmentation of the Atlantic forest on mammal communities in south-eastern Brazil. Biol Conserv 89:71–82. https://doi.org/10.1016/S0006-3207(98)00130-X
De Azevedo FCC (2008) Food habits and livestock depredation of sympatric jaguars and pumas in the Iguaçu National Park Area, South Brazil. Biotropica 40:494–500. https://doi.org/10.1111/j.1744-7429.2008.00404.x
de Azevedo FC, Lemos FG, de Almeida LB et al (2013) Avaliação do risco de extinção da onça-parda Puma concolor (Linnaeus, 1771) no Brasil. Biodiversidade Bras 3:107–121
de Bovo AA, KMPMB F, Verdade LM, Moreira JR (2016) 11. Capybaras (Hydrochoerus hydrochaeris) in anthropogenic environments: challenges and conflicts. In: Gheler-Costa C, Lyra-Jorge MC, Verdade LM (eds) Biodiversity in agricultural landscapes of southeastern Brazil. De Gruyter, Berlin, Boston, pp 178–189
Dirzo R, Young HS, Galetti M et al (2014) Defaunation in the Anthropocene. Science (80- ) 345:401–406. https://doi.org/10.1126/science.1251817
Emmons LH (1987) Comparative feeding ecology of felids in a neotropical rainforest. Behav Ecol Sociobiol 20:271–283. https://doi.org/10.1007/BF00292180
Estes JA, Terborgh J, Brashares JS et al (2011) Trophic downgrading of planet earth. Science (80- ) 333:301–306. https://doi.org/10.1126/science.1205106
Foster RJ, Harmsen BJ, Valdes B, Pomilla C, Doncaster CP (2010) Food habits of sympatric jaguars and pumas across a gradient of human disturbance. J Zool 280:309–318. https://doi.org/10.1111/j.1469-7998.2009.00663.x
Galetti M, Eizirik E, Beisiegel B et al (2013) Atlantic rainforest’s jaguars in decline. Science (80- ) 342:930 LP–930930. https://doi.org/10.1126/science.342.6161.930-a
Galetti M, Brocardo CR, Begotti RA, Hortenci L, Rocha-Mendes F, Bernardo CSS, Bueno RS, Nobre R, Bovendorp RS, Marques RM, Meirelles F, Gobbo SK, Beca G, Schmaedecke G, Siqueira T (2017) Defaunation and biomass collapse of mammals in the largest Atlantic forest remnant. Anim Conserv 20:270–281. https://doi.org/10.1111/acv.12311
Gheler-costa C, Botero GP, Reia L et al (2018) Ecologia trófica de onça-parda (Puma concolor) em paisagem agrícola. Rev em Agronegócio e Meio Ambient 11:203–225. https://doi.org/10.17765/2176-9168.2018v11n1p203-225
Gibbs HK, Ruesch AS, Achard F, Clayton MK, Holmgren P, Ramankutty N, Foley JA (2010) Tropical forests were the primary sources of new agricultural land in the 1980s and 1990s. Proc Natl Acad Sci 107:16732–16737. https://doi.org/10.1073/pnas.0910275107
Golec C (2012) Dieta de cinco espécies simpátricas de felídeos: Puma concolor (Linnaeus 1771), Puma yagouaroundi (E. Geoffroy, 1803), Leopardus pardalis (Linnaeus 1758), Leopardus wiedii (Schinz, 1821) e Leopardus tigrinus (Schreber, 1775). Universidade Estadual do Paraná, Paranavaí
Hurlbert SH (1978) The measurement of niche overlap and some relatives. Ecology 59:67–77. https://doi.org/10.2307/1936632
ICMBio - Instituto Chico Mendes de Conservação da Biodiversidade (2018) Livro Vermelho da Fauna Brasileira Ameaçada de Extinção: Volume II – Mamíferos. Instituto Chico Mendes de Conservação da Biodiversidade. Ministério do Meio Ambiente, Brasília
Iriarte JA, Franklin WL, Johnson WE, Redford KH (1990) Biogeographic variation of food habits and body size of the America puma. Oecologia 85:185–190. https://doi.org/10.1007/BF00319400
Iriarte JA, Johnson WE, Franklin WL (1991) Feeding ecology of the Patagonia puma in southernmost Chile. Rev Chil Hist Nat 64:145–156
Jaksic FM (1983) The trophic structure of sympatric assemblages of diurnal and nocturnal birds of prey. Am Midl Nat 109:152–162. https://doi.org/10.2307/2425525
Korschgen LJ (1980) Procedures for food-habits analyses. In: Schamnitz SD (ed) Wildlife management techniques manual. The Wildlife Society, Washington, pp 113–127
Leite MRP, Galvão F (2002) El jaguar, el puma y el hombre en tres áreas protegidas del bosque atlántico costero de Paraná, Brasil. In: Medellín RA, Equihua C, Chetkiewicz CLB et al (eds) El jaguar en el nuevo milenio. Universidad Autónoma de México, Wildlife Conservation Society, Mexico, DF, Fondo de Cultura Económica, pp 237–250
Levins R (1968) Evolution in changing environments: some theoretical explorations. Princeton University Press, Princeton
Lima F, Beca G, Muylaert RL, Jenkins CN, Perilli MLL, Paschoal AMO, Massara RL, Paglia AP, Chiarello AG, Graipel ME, Cherem JJ, Regolin AL, Oliveira Santos LGR, Brocardo CR, Paviolo A, di Bitetti MS, Scoss LM, Rocha FL, Fusco-Costa R, Rosa CA, da Silva MX, Hufnagell L, Santos PM, Duarte GT, Guimarães LN, Bailey LL, Rodrigues FHG, Cunha HM, Fantacini FM, Batista GO, Bogoni JA, Tortato MA, Luiz MR, Peroni N, de Castilho PV, Maccarini TB, Filho VP, Angelo CD, Cruz P, Quiroga V, Iezzi ME, Varela D, Cavalcanti SMC, Martensen AC, Maggiorini EV, Keesen FF, Nunes AV, Lessa GM, Cordeiro-Estrela P, Beltrão MG, de Albuquerque ACF, Ingberman B, Cassano CR, Junior LC, Ribeiro MC, Galetti M (2017) ATLANTIC-CAMTRAPS: a dataset of medium and large terrestrial mammal communities in the Atlantic Forest of South America. Ecology 98:2979. https://doi.org/10.1002/ecy.1998
Maehr DS, Brady JR (1986) Food habits of bobcats in Florida. J Mammal 67:133–138. https://doi.org/10.2307/1381009
Magezi G (2013) Dieta de felídeos silvestres em áreas de Floresta Atlântica Costeira, litoral Norte do Estado do Paraná. Universidade Federal do Paraná, Paranavaí
Magioli M, Moreira MZ, Ferraz KMB, Miotto RA, de Camargo PB, Rodrigues MG, da Silva Canhoto MC, Setz EF (2014) Stable isotope evidence of puma concolor (felidae) feeding patterns in agricultural landscapes in southeastern brazil. Biotropica 46:451–460. https://doi.org/10.1111/btp.12115
Magioli M, Ribeiro MC, Ferraz KMPMB, Rodrigues MG (2015) Thresholds in the relationship between functional diversity and patch size for mammals in the Brazilian Atlantic Forest. Anim Conserv 18:499–511. https://doi.org/10.1111/acv.12201
Magioli M, Ferraz KMPMB, Setz EZF et al (2016) Connectivity maintain mammal assemblages functional diversity within agricultural and fragmented landscapes. Eur J Wildl Res 62:431–446. https://doi.org/10.1007/s10344-016-1017-x
Magioli M, Moreira MZ, Fonseca RCB, Ribeiro MC, Rodrigues MG, KMPM F (2019) Human-modified landscapes alter mammal resource and habitat use and trophic structure. Proc Natl Acad Sci 116:18466–18472. https://doi.org/10.1073/pnas.1904384116
Projeto MapBiomas (2020) Coleção 5 da série anual de mapas de cobertura e uso de solo do Brasil. https://mapbiomas.org/en/colecoes-mapbiomas-1?cama_set_language=en. Accessed 8 Sep 2020
Marchini S, Crawshaw PG (2015) Human–wildlife conflicts in Brazil: a fast-growing issue. Hum Dimens Wildl 20:323–328. https://doi.org/10.1080/10871209.2015.1004145
Martins R, Quadros J, Mazzolli M (2008) Hábito alimentar e interferência antrópica na atividade de marcação territorial do Puma concolor e Leopardus pardalis (Carnivora: Felidae) e outros carnívoros na Estação Ecológica de Juréia-Itatins, São Paulo. Brasil Rev Bras Zool 25:427–435
Miotto RA, Cervini M, Kajin M, Begotti RA, Galetti PM Jr (2014) Estimating puma Puma concolor population size in a human-disturbed landscape in Brazil, using DNA mark–recapture data. Oryx 48:250–257. DOI. https://doi.org/10.1017/S0030605312000841
Miranda GHB, Rodrigues FHG, Paglia AP (2014) Guia de identificação de pelos de mamíferos brasileiros. Editora Ciências Forenses, Brasília
Monroy-Vilchis O, Gómez Y, Janczur M, Urios V (2009) Food niche of Puma concolor in Central Mexico. Wildl Biol 15:97–105. https://doi.org/10.2981/07-054
Moreno RS, Kays RW, Samudio R Jr (2006) Competitive release in diets of ocelot (Leopardus pardalis) and puma (Puma concolor) after jaguar (Panthera onca) decline. J Mammal 87:808–816. https://doi.org/10.1644/05-MAMM-A-360R2.1
Nakano-Oliveira E (2006) Ecologia e conservação de mamíferos carnívoros de Mata Atlântica na região do complexo estuarino lagunar de Cananeia. Universidade Estadual de Campinas, Campinas
Nielsen C, Thompson D, Kelly M, Lopez-Gonzalez CA (2015) Puma concolor. (errata version published in 2016) The IUCN Red List of Threatened Species 2015: e.T18868A97216466. https://doi.org/10.2305/IUCN.UK.2015-4.RLTS.T18868A50663436.en. Accessed Dec 2020
Núñez R, Miller B, Lindzey F (2000) Food habits of jaguars and pumas in Jalisco, Mexico. J Zool 252:373–379. https://doi.org/10.1111/j.1469-7998.2000.tb00632.x
Oliveira TG (2002) Comparative feeding ecology of jaguar and puma in the Neotropics. In: Medellín RA, Equihua C, Chetkiewicz CLB et al (eds) El jaguar en el nuevo milenio. Universidad Autónoma de México, Wildlife Conservation Society, Fondo de Cultura Económica, pp 265–288
Oliveira T, Cassaro K (2006) Guia de campo dos felinos do Brasil. Instituto Pró-Carnívoros; Fundação do Parque Zoológico de São Paulo. Sociedade de Zoológicos do Brasil, Pró-Vida Brasil, São Paulo
Pacheco LF, Lucero A, Villca M (2004) Dieta del puma (Puma concolor) en el Parque Nacional Sajama, Bolivia y su conflicto con la ganadería. Ecol Boliv 39:75–83
Paglia AP, da Fonseca GAB, Rylands AB et al (2012) Lista Anotada dos Mamíferos do Brasil 2a Edição. Occas Pap Conserv Biol 6:76
Paviolo A, De Angelo C, Ferraz KMPMB et al (2016) A biodiversity hotspot losing its top predator: the challenge of jaguar conservation in the Atlantic Forest of South America. Sci Rep 6:37147. https://doi.org/10.1038/srep37147
Polisar J, Maxit I, Scognamillo D, Farrell L, Sunquist ME, Eisenberg JF (2003) Jaguars, pumas, their prey base, and cattle ranching: ecological interpretations of a management problem. Biol Conserv 109:297–310. https://doi.org/10.1016/S0006-3207(02)00157-X
Quadros J (2002) Identificação microscópica de pelos de mamíferos e sua aplicação no estudo da dieta de carnívoros. Universidade Federal do Paraná, Curitiba
R Core Team (2020) R: A Language and Environment for Statistical Computing (Version 4.0.3, R Foundation for Statistical Computing, Vienna, Austria, 2020) Electronic Database. http://www.R-project.org/. Accessed Dec 2020
Ribeiro MC, Metzger JP, Martensen AC, Ponzoni FJ, Hirota MM (2009) The Brazilian Atlantic Forest: how much is left, and how is the remaining forest distributed? Implications for conservation. Biol Conserv 142:1141–1153. https://doi.org/10.1016/j.biocon.2009.02.021
Ripple WJ, Estes JA, Beschta RL et al (2014) Status and ecological effects of the world’s largest carnivores. Science (80- ) 343:1241484. https://doi.org/10.1126/science.1241484
Ripple WJ, Newsome TM, Wolf C, Dirzo R, Everatt KT, Galetti M, Hayward MW, Kerley GIH, Levi T, Lindsey PA, Macdonald DW, Malhi Y, Painter LE, Sandom CJ, Terborgh J, van Valkenburgh B (2015) Collapse of the world’s largest herbivores. Sci Adv 1:e1400103. https://doi.org/10.1126/sciadv.1400103
Rocha-Mendes F, Mikich SB, Quadros J, Pedro WA (2010) Feeding ecology of carnivores (Mammalia, Carnivora) in Atlantic Forest remnants, Southern Brazil. Biota Neotrop 10:21–30
Röhe F (2002) Hábitos alimentares da suҫuarana (Puma concolor) (Linnaeus 1771) em Mosaico de Floresta Secundária e reflorestamento de Eucaliptus saligna. Mata Atlântica, no Município de Pilar do Sul–SP. Universidade Estadual de Campinas, Campinas
Rongetta A (2014) Dieta alimentar da onça-parda, Puma concolor (Linnaeus, 1771), em uma unidade de manejo florestal em Borebi-SP. Universidade Estadual Paulista “Júlio de Mesquita Filho”, São Paulo
RStudio Team (2020) RStudio: integrated development for R
Sanderson EW, Redford KH, Chetkiewicz C-LB, Medellin RA, Rabinowitz AR, Robinson JG, Taber AB (2002) Planning to save a species: the jaguar as a model. Conserv Biol 16:58–72. https://doi.org/10.1046/j.1523-1739.2002.00352.x
Santos JL, Paschoal AMO, Massara RL, Chiarello AG (2014) High consumption of primates by pumas and ocelots in a remnant of the Brazilian Atlantic Forest. Braz J Biol 74:632–641
Sunquist M, Sunquist F (2002) Wild cats of the world. University of Chicago Press, Chicago
Vidolin G (2004) Aspectos bio-ecológicos de Puma concolor (Linnaeus, 1771), Leopardus pardalis (Linnaeus, 1758) e Leopardus tigrinus (Schreber, 1775) na Reserva Natural Salto Morato, Guaraqueçaba, Paraná, Brasil. Universidade Federal do Paraná, Curitiba
Wickham H (2016) ggplot2: Elegant graphics for data analysis. Springer International Publishing, New York
Zanin M, Adrados B, de Foletto VC et al (2020) What should I eat: feeding behaviour of puma in a Brazilian protected semi-arid area, Hystrix. Ital J Mammal 31:21–25. https://doi.org/10.4404/hystrix-00265-2019