Defining antimicrobial resistance in cystic fibrosis

Journal of Cystic Fibrosis - Tập 17 Số 6 - Trang 696-704 - 2018
Timothy J. Kidd1, Rafael Cantón2, Miquel B. Ekkelenkamp3, Helle Krogh Johansen4, Peter H. Gilligan5, John J. LiPuma6, Scott C. Bell7, J.S. Elborn8, Patrick A. Flume9, Donald R. VanDevanter10, Valerie J. Waters11
1School of Chemistry and Molecular Biosciences, The University of Queensland, Lung Bacteria Group, QIMR Berghofer Medical Research Institute, Brisbane, Australia
2Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
3Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
4Department of Clinical Microbiology, Rigshospitalet, Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
5Clinical Microbiology-Immunology Laboratories, UNC HealthCare, Chapel Hill, NC, USA
6Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI, USA
7Department of Thoracic Medicine, The Prince Charles Hospital and QIMR Berghofer Medical Researhc Institute, Brisbane, Australia
8Imperial College and Royal Brompton Hospital, London, Queen's University Belfast, United Kingdom
9Departments of Medicine and Pediatrics, Medical University of South Carolina, Charleston SC, USA
10Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
11Division of Infectious Diseases, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Mandell, 2015

Sherrard, 2014, Antimicrobial resistance in the respiratory microbiota of people with cystic fibrosis, Lancet, 384, 703, 10.1016/S0140-6736(14)61137-5

Kanafani, 2008, Antimicrobial resistance: resistance to antifungal agents: mechanisms and clinical impact, Clin. Infect. Dis., 46, 120, 10.1086/524071

Chmiel, 2014, Antibiotic management of lung infections in cystic fibrosis. I. The microbiome, methicillin-resistant Staphylococcus aureus, Gram-negative bacteria, and multiple infections, Ann. Am. Thorac. Soc., 11, 1120, 10.1513/AnnalsATS.201402-050AS

Beaudoin, 2016, Infections with biofilm formation: selection of antimicrobials and role of prolonged antibiotic therapy, Pediatr. Infect. Dis. J., 35, 695, 10.1097/INF.0000000000001144

Zhao, 2012, Decade-long bacterial community dynamics in cystic fibrosis airways, Proc. Natl. Acad. Sci. U. S. A., 109, 5809, 10.1073/pnas.1120577109

Coburn, 2015, Lung microbiota across age and disease stage in cystic fibrosis, Sci. Rep., 5, 10.1038/srep10241

Beaudoin, 2017, Staphylococcus aureus interaction with Pseudomonas aeruginosa biofilm enhances tobramycin resistance, NPJ Biofilms Microbiomes, 3, 25, 10.1038/s41522-017-0035-0

Duan, 2003, Modulation of Pseudomonas aeruginosa gene expression by host microflora through interspecies communication, Mol. Microbiol., 50, 1477, 10.1046/j.1365-2958.2003.03803.x

Sibley, 2008, Discerning the complexity of community interactions using a Drosophila model of polymicrobial infections, PLoS Pathog., 4, 10.1371/journal.ppat.1000184

Hoffman, 2006, Selection for Staphylococcus aureus small-colony variants due to growth in the presence of Pseudomonas aeruginosa, Proc. Natl. Acad. Sci. U. S. A., 103, 19890, 10.1073/pnas.0606756104

Riedel, 2001, N-acylhomoserine-lactone-mediated communication between Pseudomonas aeruginosa and Burkholderia cepacia in mixed biofilms, Microbiology, 147, 3249, 10.1099/00221287-147-12-3249

Shade, 2012, Fundamentals of microbial community resistance and resilience, Front. Microbiol., 3, 417, 10.3389/fmicb.2012.00417

Carmody, 2013, Changes in cystic fibrosis airway microbiota at pulmonary exacerbation, Ann. Am. Thorac. Soc., 10, 179, 10.1513/AnnalsATS.201211-107OC

Tsuchido, 1988, Sensitization by heat treatment of Escherichia coli K-12 cells to hydrophobic antibacterial compounds, Antimicrob. Agents Chemother., 32, 1680, 10.1128/AAC.32.11.1680

Mahenthiralingam, 2005, The multifarious, multireplicon Burkholderia cepacia complex, Nat. Rev. Microbiol., 3, 144, 10.1038/nrmicro1085

Bador, 2013, Innate aminoglycoside resistance of Achromobacter xylosoxidans is due to AxyXY-OprZ, an RND-type multidrug efflux pump, Antimicrob. Agents Chemother., 57, 603, 10.1128/AAC.01243-12

Blair, 2015, Molecular mechanisms of antibiotic resistance, Nat. Rev. Microbiol., 13, 42, 10.1038/nrmicro3380

Martinez, 1998, Quinolone resistance by mutations in chromosomal gyrase genes, J. Antimicrob. Chemother., 42, 683, 10.1093/jac/42.6.683

Oliver, 2010, Bacterial hypermutation in cystic fibrosis, not only for antibiotic resistance, Clin. Microbiol. Infect., 16, 798, 10.1111/j.1469-0691.2010.03250.x

Oliver, 2000, High frequency of hypermutable Pseudomonas aeruginosa in cystic fibrosis lung infection, Science, 288, 1251, 10.1126/science.288.5469.1251

Patel, 2015, Mechanisms of resistance to antimicrobial agents, 1212

Livermore, 1992, Interplay of impermeability and chromosomal beta-lactamase activity in imipenem-resistant Pseudomonas aeruginosa, Antimicrob. Agents Chemother., 36, 2046, 10.1128/AAC.36.9.2046

Schulz Zur Wiesch, 2010, Compensation of fitness costs and reversibility of antibiotic resistance mutations, Antimicrob. Agents Chemother., 54, 2085, 10.1128/AAC.01460-09

Beceiro, 2013, Antimicrobial resistance and virulence: a successful or deleterious association in the bacterial world?, Clin. Microbiol. Rev., 26, 185, 10.1128/CMR.00059-12

Imamovic, 2018, Drug-driven phenotypic convergence supports rational treatment strategies of chronic infections, Cell, 172, 10.1016/j.cell.2017.12.012

Jeannot, 2008, Resistance and virulence of Pseudomonas aeruginosa clinical strains overproducing the MexCD-OprJ efflux pump, Antimicrob. Agents Chemother., 52, 2455, 10.1128/AAC.01107-07

Brauner, 2016, Distinguishing between resistance, tolerance and persistence to antibiotic treatment, Nat. Rev. Microbiol., 14, 320, 10.1038/nrmicro.2016.34

Horne, 1977, Tolerant response of Streptococcus sanguis to B-lactams and other cell-wall inhibitors, Antimicrob. Agents Chemother., 888, 10.1128/AAC.11.5.888

Singh, 2000, Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms, Nature, 407, 762, 10.1038/35037627

Proctor, 1998, Staphylococcal small colony variants have novel mechanisms for antibiotic resistance, Clin. Infect. Dis., 27, S68, 10.1086/514906

Kopf, 2016, Trace incorporation of heavy water reveals slow and heterogeneous pathogen growth rates in cystic fibrosis sputum, Proc. Natl. Acad. Sci. U. S. A., 113, E110, 10.1073/pnas.1512057112

Kragh, 2014, Polymorphonuclear leukocytes restrict growth of Pseudomonas aeruginosa in the lungs of cystic fibrosis patients, Infect. Immun., 82, 4477, 10.1128/IAI.01969-14

Bigger, 1944, Treatment of staphylococcal infections with penicillin by intermittent sterilisation, Lancet, 497, 10.1016/S0140-6736(00)74210-3

Mulcahy, 2010, Emergence of Pseudomonas aeruginosa strains producing high levels of persister cells in patients with cystic fibrosis, J. Bacteriol., 192, 6191, 10.1128/JB.01651-09

Harms, 2016, Mechanisms of bacterial persistence during stress and antibiotic exposure, Science, 354, 10.1126/science.aaf4268

Clinical Laboratory Standards Institute, 2018

European Committee for Antimicrobial Susceptibility Testing of the European Society of Clinical M, 2000, EUCAST Definitive Document E.DEF 2.1, August 2000: Determination of antimicrobial susceptibility test breakpoints, Clin. Microbiol. Infect., 6, 570, 10.1046/j.1469-0691.2000.00178.x

Jorgensen, 2015, Susceptibility test methods: dilution and disk diffusion methods, 1253

Burns, 2001, Comparison of two commercial systems (Vitek and MicroScan-WalkAway) for antimicrobial susceptibility testing of Pseudomonas aeruginosa isolates from cystic fibrosis patients, Diagn. Microbiol. Infect. Dis., 39, 257, 10.1016/S0732-8893(01)00234-6

Otto-Karg, 2009, Validation of Vitek 2 nonfermenting gram-negative cards and Vitek 2 version 4.02 software for identification and antimicrobial susceptibility testing of nonfermenting gram-negative rods from patients with cystic fibrosis, J. Clin. Microbiol., 47, 3283, 10.1128/JCM.00505-09

Sader, 2006, Accuracy of three automated systems (MicroScan WalkAway, VITEK, and VITEK 2) for susceptibility testing of Pseudomonas aeruginosa against five broad-spectrum beta-lactam agents, J. Clin. Microbiol., 44, 1101, 10.1128/JCM.44.3.1101-1104.2006

Balke, 2008, A German external quality survey of diagnostic microbiology of respiratory tract infections in patients with cystic fibrosis, J. Cyst. Fibros., 7, 7, 10.1016/j.jcf.2007.02.007

Burns, 2000, Comparison of agar diffusion methodologies for antimicrobial susceptibility testing of Pseudomonas aeruginosa isolates from cystic fibrosis patients, J. Clin. Microbiol., 38, 1818, 10.1128/JCM.38.5.1818-1822.2000

Turnidge, 2007, Setting and revising antibacterial susceptibility breakpoints, Clin. Microbiol. Rev., 20, 391, 10.1128/CMR.00047-06

Hoiby, 2015, ESCMID guideline for the diagnosis and treatment of biofilm infections 2014, Clin. Microbiol. Infect., 21, S1, 10.1016/j.cmi.2014.10.024

Moskowitz, 2004, Clinically feasible biofilm susceptibility assay for isolates of Pseudomonas aeruginosa from patients with cystic fibrosis, J. Clin. Microbiol., 42, 1915, 10.1128/JCM.42.5.1915-1922.2004

Ceri, 1999, The Calgary Biofilm device: new technology for rapid determination of antibiotic susceptibilities of bacterial biofilms, J. Clin. Microbiol., 37, 1771, 10.1128/JCM.37.6.1771-1776.1999

Riera, 2010, Anti-biofilm and resistance suppression activities of CXA-101 against chronic respiratory infection phenotypes of Pseudomonas aeruginosa strain PAO1, J. Antimicrob. Chemother., 65, 1399, 10.1093/jac/dkq143

Macia, 2014, Antimicrobial susceptibility testing in biofilm-growing bacteria, Clin. Microbiol. Infect., Vol. 20, 981, 10.1111/1469-0691.12651

Flume, 2009, Cystic fibrosis pulmonary guidelines: treatment of pulmonary exacerbations, Am. J. Respir. Crit. Care Med., 180, 802, 10.1164/rccm.200812-1845PP

Smyth, 2014, European cystic fibrosis society standards of care: best Practice guidelines, J. Cyst. Fibros., 13, S23, 10.1016/j.jcf.2014.03.010

Bollenbach, 2015, Antimicrobial interactions: mechanisms and implications for drug discovery and resistance evolution, Curr. Opin. Microbiol., 27, 1, 10.1016/j.mib.2015.05.008

Doern, 2014, When does 2 plus 2 equal 5? A review of antimicrobial synergy testing, J. Clin. Microbiol., 52, 4124, 10.1128/JCM.01121-14

Mogayzel, 2013, Cystic fibrosis pulmonary guidelines. Chronic medications for maintenance of lung health, Am. J. Respir. Crit. Care Med., 187, 680, 10.1164/rccm.201207-1160OE

Ramsey, 1999, Intermittent administration of inhaled tobramycin in patients with cystic fibrosis. Cystic fibrosis Inhaled Tobramycin Study Group, N. Engl. J. Med., 340, 23, 10.1056/NEJM199901073400104

Oermann, 2011, Pseudomonas aeruginosa antibiotic susceptibility during long-term use of aztreonam for inhalation solution (AZLI), J. Antimicrob. Chemother., 66, 2398, 10.1093/jac/dkr303

Dalhoff, 2014, Pharmacokinetics and pharmacodynamics of aerosolized antibacterial agents in chronically infected cystic fibrosis patients, Clin. Microbiol. Rev., 27, 753, 10.1128/CMR.00022-14

Bos, 2017, Patient-specific modelling of regional tobramycin concentration levels in airways of patients with cystic fibrosis: can we dose once daily?, J. Antimicrob. Chemother., 72, 3435, 10.1093/jac/dkx293

Bos, 2015, Patient-specific modeling of regional antibiotic concentration levels in airways of patients with cystic fibrosis: are we dosing high enough?, PLoS One, 10, 10.1371/journal.pone.0118454

Bos, 2017, The fate of inhaled antibiotics after deposition in cystic fibrosis: how to get drug to the bug?, J. Cyst. Fibros., 16, 13, 10.1016/j.jcf.2016.10.001

Morosini, 2005, Breakpoints for predicting Pseudomonas aeruginosa susceptibility to inhaled tobramycin in cystic fibrosis patients: use of high-range Etest strips, J. Clin. Microbiol., 43, 4480, 10.1128/JCM.43.9.4480-4485.2005

Bosso, 2006, Consequences of combining cystic fibrosis- and non-cystic fibrosis-derived Pseudomonas aeruginosa antibiotic susceptibility results in hospital antibiograms, Ann. Pharmacother., 40, 1946, 10.1345/aph.1H377

Barlam TF, Cosgrove SE, Abbo LM, MacDougall C, Schuetz AN, Septimus EJ, et al. Implementing an antibiotic stewardship program: guidelines by the Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America Clin. Infect. Dis. 2016;62:e51–77.

Clinical Laboratory Standards Institute, 2014

Lipuma, 2010, The changing microbial epidemiology in cystic fibrosis, Clin. Microbiol. Rev., 23, 299, 10.1128/CMR.00068-09

Brown, 2014, Directly sampling the lung of a young child with cystic fibrosis reveals diverse microbiota, Ann. Am. Thorac. Soc., 11, 1049, 10.1513/AnnalsATS.201311-383OC

Jorth, 2015, Regional isolation drives bacterial diversification within cystic fibrosis lungs, Cell Host Microbe, 18, 307, 10.1016/j.chom.2015.07.006

Pesci, 1997, Regulation of las and rhl quorum sensing in Pseudomonas aeruginosa, J. Bacteriol., 179, 3127, 10.1128/JB.179.10.3127-3132.1997

Proctor, 1995, Persistent and relapsing infections associated with small-colony variants of Staphylococcus aureus, Clin. Infect. Dis., Vol. 20, 95, 10.1093/clinids/20.1.95

Foweraker, 2005, Phenotypic variability of Pseudomonas aeruginosa in sputa from patients with acute infective exacerbation of cystic fibrosis and its impact on the validity of antimicrobial susceptibility testing, J. Antimicrob. Chemother., 55, 921, 10.1093/jac/dki146

Manno, 2005, Antimicrobial use and Pseudomonas aeruginosa susceptibility profile in a cystic fibrosis centre, Int. J. Antimicrob. Agents, 25, 193, 10.1016/j.ijantimicag.2004.11.009

Clark, 2015, Phenotypic diversity within a Pseudomonas aeruginosa population infecting an adult with cystic fibrosis, Sci. Rep., 5, 10.1038/srep10932

Gilligan, 2006

Wright, 2007, The antibiotic resistome: the nexus of chemical and genetic diversity, Nat. Rev. Microbiol., 5, 175, 10.1038/nrmicro1614

Bradley, 2015, Rapid antibiotic-resistance predictions from genome sequence data for Staphylococcus aureus and Mycobacterium tuberculosis, Nat. Commun., 6, 10063, 10.1038/ncomms10063

Ellington, 2017, The role of whole genome sequencing in antimicrobial susceptibility testing of bacteria: report from the EUCAST Subcommittee, Clin. Microbiol. Infect., Vol. 23, 2, 10.1016/j.cmi.2016.11.012

Lim, 2014, Clinical insights from metagenomic analysis of sputum samples from patients with cystic fibrosis, J. Clin. Microbiol., 52, 425, 10.1128/JCM.02204-13