Defining Human Tyrosine Kinase Phosphorylation Networks Using Yeast as an In Vivo Model Substrate
Tài liệu tham khảo
Alcaraz, 2014, KeyPathwayMiner 4.0: condition-specific pathway analysis by combining multiple omics studies and networks with Cytoscape, BMC Syst. Biol., 8, 99, 10.1186/s12918-014-0099-x
Ballif, 2008, Large-scale identification and evolution indexing of tyrosine phosphorylation sites from murine brain, J. Proteome Res., 7, 311, 10.1021/pr0701254
Begley, 2015, EGF-receptor specificity for phosphotyrosine-primed substrates provides signal integration with Src, Nat. Struct. Mol. Biol., 22, 983, 10.1038/nsmb.3117
Beltrao, 2012, Systematic functional prioritization of protein posttranslational modifications, Cell, 150, 413, 10.1016/j.cell.2012.05.036
Bhattacharyya, 2006, Domains, motifs, and scaffolds: the role of modular interactions in the evolution and wiring of cell signaling circuits, Annu. Rev. Biochem., 75, 655, 10.1146/annurev.biochem.75.103004.142710
Brugge, 1987, Expression of Rous sarcoma virus transforming protein pp60v-src in Saccharomyces cerevisiae cells, Mol. Cell. Biol., 7, 2180, 10.1128/MCB.7.6.2180
Chou, 2012, Using bacteria to determine protein kinase specificity and predict target substrates, PLoS One, 7, e52747, 10.1371/journal.pone.0052747
Colaert, 2009, Improved visualization of protein consensus sequences by iceLogo, Nat. Methods, 6, 786, 10.1038/nmeth1109-786
Colicelli, 2010, ABL tyrosine kinases: evolution of function, regulation, and specificity, Sci. Signal., 3, re6, 10.1126/scisignal.3139re6
Cooper, 1988, Potential positive and negative autoregulation of p60c-src by intermolecular autophosphorylation, Proc. Natl. Acad. Sci. USA, 85, 4232, 10.1073/pnas.85.12.4232
Creixell, 2015, Unmasking determinants of specificity in the human kinome, Cell, 163, 187, 10.1016/j.cell.2015.08.057
Creixell, 2015, Pathway and network analysis of cancer genomes, Nat. Methods, 12, 615, 10.1038/nmeth.3440
Deng, 2014, Global analysis of human nonreceptor tyrosine kinase specificity using high-density peptide microarrays, J. Proteome Res., 13, 4339, 10.1021/pr500503q
Dinkel, 2011, Phospho.ELM: a database of phosphorylation sites – update 2011, Nucleic Acids Res., 39, D261, 10.1093/nar/gkq1104
Dosztanyi, 2005, IUPred: web server for the prediction of intrinsically unstructured regions of proteins based on estimated energy content, Bioinformatics, 21, 3433, 10.1093/bioinformatics/bti541
Doubleday, 2014, Developmentally dynamic murine brain proteomes and phosphoproteomes revealed by quantitative proteomics, Proteomes, 2, 197, 10.3390/proteomes2020191
Duan, 2015, The roles of post-translational modifications in the context of protein interaction networks, PLoS Comput. Biol., 11, e1004049, 10.1371/journal.pcbi.1004049
Duarte, 2014, Protein folding creates structure-based, noncontiguous consensus phosphorylation motifs recognized by kinases, Sci. Signal., 7, ra105, 10.1126/scisignal.2005412
Eng, 2008, A fast SEQUEST cross correlation algorithm, J. Proteome Res., 7, 4598, 10.1021/pr800420s
Florio, 1994, Aberrant protein phosphorylation at tyrosine is responsible for the growth-inhibitory action of pp60v-src expressed in the yeast Saccharomyces cerevisiae, Mol. Biol. Cell, 5, 283, 10.1091/mbc.5.3.283
Gavin, 2006, Proteome survey reveals modularity of the yeast cell machinery, Nature, 440, 631, 10.1038/nature04532
Gnad, 2009, High-accuracy identification and bioinformatic analysis of in vivo protein phosphorylation sites in yeast, Proteomics, 9, 4642, 10.1002/pmic.200900144
Grably, 2010, A detailed protocol for chromatin immunoprecipitation in the yeast Saccharomyces cerevisiae, Methods Mol. Biol., 638, 211, 10.1007/978-1-60761-611-5_16
Grossmann, 2015, Phospho-tyrosine dependent protein-protein interaction network, Mol. Syst. Biol., 11, 794, 10.15252/msb.20145968
Harris, 2013, A general assay for monitoring the activities of protein tyrosine phosphatases in living eukaryotic cells, Anal. Biochem., 435, 99, 10.1016/j.ab.2012.12.025
Hofree, 2013, Network-based stratification of tumor mutations, Nat. Methods, 10, 1108, 10.1038/nmeth.2651
Hornbeck, 2012, Phospho siteplus: a comprehensive resource for investigating the structure and function of experimentally determined post-translational modifications in man and mouse, Nucleic Acids Res., 40, D261, 10.1093/nar/gkr1122
Hu, 2014, Phospho networks: a database for human phosphorylation networks, Bioinformatics, 30, 141, 10.1093/bioinformatics/btt627
Kamburov, 2013, The consensus PathDB interaction database: 2013 update, Nucleic Acids Res., 41, D793, 10.1093/nar/gks1055
Kornbluth, 1987, Characterization of avian and viral p60src proteins expressed in yeast, Proc. Natl. Acad. Sci. USA, 84, 4455, 10.1073/pnas.84.13.4455
Koyama, 2006, Expression of human tyrosine kinase, Lck, in yeast Saccharomyces cerevisiae: growth suppression and strategy for inhibitor screening, Protein Pept. Lett., 13, 915, 10.2174/092986606778256216
Krogan, 2006, Global landscape of protein complexes in the yeast Saccharomyces cerevisiae, Nature, 440, 637, 10.1038/nature04670
Lerner, 2005, Activation of the Src family kinase Hck without SH3-linker release, J. Biol. Chem., 280, 40832, 10.1074/jbc.M508782200
Linding, 2007, Systematic discovery of in vivo phosphorylation networks, Cell, 129, 1415, 10.1016/j.cell.2007.05.052
López-Ratón, 2014, OptimalCutpoints. An R package for selecting optimal cutpoints in diagnostic tests, J. Stat. Soft., 61
Manning, 2002, The protein kinase complement of the human genome, Science, 298, 1912, 10.1126/science.1075762
Miller, 2008, Linear motif atlas for phosphorylation-dependent signaling, Sci. Signal., 1, ra2, 10.1126/scisignal.1159433
Mok, 2010, Deciphering protein kinase specificity through large-scale analysis of yeast phosphorylation site motifs, Sci. Signal., 3, ra12, 10.1126/scisignal.2000482
Montalibet, 2004, Using yeast to screen for inhibitors of protein tyrosine phosphatase 1B, Biochem. Pharmacol., 68, 1807, 10.1016/j.bcp.2004.06.024
Murphy, 1993, Suppression of c-Src activity by C-terminal Src kinase involves the c-Src SH2 and SH3 domains: analysis with Saccharomyces cerevisiae, Mol. Cell. Biol., 13, 5290, 10.1128/MCB.13.9.5290
Nada, 1991, Cloning of a complementary DNA for a protein-tyrosine kinase that specifically phosphorylates a negative regulatory site of p60c-src, Nature, 351, 69, 10.1038/351069a0
Newman, 2013, Construction of human activity-based phosphorylation networks, Mol. Syst. Biol., 9, 655, 10.1038/msb.2013.12
Pandya, 2015, Testing whether metazoan tyrosine loss was driven by selection against promiscuous phosphorylation, Mol. Biol. Evol., 32, 144, 10.1093/molbev/msu284
Pluk, 2002, Autoinhibition of c-Abl, Cell, 108, 247, 10.1016/S0092-8674(02)00623-2
Remm, 2001, Automatic clustering of orthologs and in-paralogs from pairwise species comparisons, J. Mol. Biol., 314, 1041, 10.1006/jmbi.2000.5197
Rush, 2005, Immunoaffinity profiling of tyrosine phosphorylation in cancer cells, Nat. Biotechnol., 23, 94, 10.1038/nbt1046
Schieven, 1986, Protein-tyrosine kinase activity in Saccharomyces cerevisiae, Science, 231, 390, 10.1126/science.2417318
Schwartz, 2005, An iterative statistical approach to the identification of protein phosphorylation motifs from large-scale data sets, Nat. Biotechnol., 23, 1391, 10.1038/nbt1146
Shah, 2016, An electrostatic selection mechanism controls sequential kinase signaling downstream of the T cell receptor, Elife, 5, 10.7554/eLife.20105
Shannon, 2003, Cytoscape: a software environment for integrated models of biomolecular interaction networks, Genome Res., 13, 2498, 10.1101/gr.1239303
Sing, 2005, ROCR: visualizing classifier performance in R, Bioinformatics, 21, 3940, 10.1093/bioinformatics/bti623
Songyang, 1995, Recognition and specificity in protein tyrosine kinase-mediated signalling, Trends Biochem. Sci., 20, 470, 10.1016/S0968-0004(00)89103-3
Superti-Furga, 1993, Csk inhibition of c-Src activity requires both the SH2 and SH3 domains of Src, EMBO J., 12, 2625, 10.1002/j.1460-2075.1993.tb05923.x
Takashima, 2003, Regulation of c-Fes tyrosine kinase activity by coiled-coil and SH2 domains: analysis with Saccharomyces cerevisiae, Biochemistry, 42, 3567, 10.1021/bi0272499
Tan, 2009, Comparative analysis reveals conserved protein phosphorylation networks implicated in multiple diseases, Sci. Signal., 2, ra39, 10.1126/scisignal.2000316
Tan, 2009, Positive selection of tyrosine loss in metazoan evolution, Science, 325, 1686, 10.1126/science.1174301
Ubersax, 2007, Mechanisms of specificity in protein phosphorylation, Nat. Rev. Mol. Cell Biol., 8, 530, 10.1038/nrm2203
Vanunu, 2010, Associating genes and protein complexes with disease via network propagation, PLoS Comput. Biol., 6, e1000641, 10.1371/journal.pcbi.1000641
Vinayagam, 2013, Protein complex-based analysis framework for high-throughput data sets, Sci. Signal., 6, rs5, 10.1126/scisignal.2003629
Wagih, 2015, MIMP: predicting the impact of mutations on kinase-substrate phosphorylation, Nat. Methods, 12, 531, 10.1038/nmeth.3396
Wang, 2012, PaxDb, a database of protein abundance averages across all three domains of life, Mol. Cell. Proteomics, 11, 492, 10.1074/mcp.O111.014704
Wang, 2013, Determination of CK2 specificity and substrates by proteome-derived peptide libraries, J. Proteome Res., 12, 3813, 10.1021/pr4002965
Wickham, 2009
Woodsmith, 2013, Dual coordination of post translational modifications in human protein networks, PLoS Comput. Biol., 9, e1002933, 10.1371/journal.pcbi.1002933
Woodsmith, 2014, Studying post-translational modifications with protein interaction networks, Curr. Opin. Struct. Biol., 24, 34, 10.1016/j.sbi.2013.11.009
Worseck, 2012, A stringent yeast two-hybrid matrix screening approach for protein-protein interaction discovery, Methods Mol. Biol., 812, 63, 10.1007/978-1-61779-455-1_4
Xue, 2008, GPS 2.0, a tool to predict kinase-specific phosphorylation sites in hierarchy, Mol. Cell. Proteomics, 7, 1598, 10.1074/mcp.M700574-MCP200
Yu, 2008, High-quality binary protein interaction map of the yeast interactome network, Science, 322, 104, 10.1126/science.1158684
Zeke, 2015, Systematic discovery of linear binding motifs targeting an ancient protein interaction surface on MAP kinases, Mol. Syst. Biol., 11, 837, 10.15252/msb.20156269