Defects in Metal Additive Manufacturing Processes

Journal of Materials Engineering and Performance - Tập 30 Số 7 - Trang 4808-4818 - 2021
Marissa Brennan1, Jayme Keist1, Todd Palmer1
1The Pennsylvania State University, University Park, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A. Wilson-Heid, A. De and W. Zhang, Additive Manufacturing of Metallic Components Process Structure and Properties, Prog. Mater. Sci., 2018, 92(Suppl. C), p 112–224. https://doi.org/10.1016/j.pmatsci.2017.10.001

W.J. Sames, F.A. List, S. Pannala, R.R. Dehoff and S.S. Babu, The Metallurgy and Processing Science of Metal Additive Manufacturing, Int. Mater. Rev., 2016, 6(5), p 315–360. https://doi.org/10.1080/09506608.2015.1116649

M. Gorelik, Additive Manufacturing in the Context of Structural Integrity, Int. J. Fatigue, 2017, 94, p 168–177. https://doi.org/10.1016/j.ijfatigue.2016.07.005

J.C. Lippold, Welding Metallurgy and Weldability, Wiley, Hoboken, 2015, p 1–400. https://doi.org/10.1002/9781118960332

M. Khanzadeh, S. Chowdhury, M.A. Tschopp, H.R. Doude, M. Marufuzzaman and L. Bian, In-situ Monitoring of Melt Pool Images for Porosity Prediction in Directed Energy Deposition Processes, IISE Trans., 2019, 51(5), p 437–455. https://doi.org/10.1080/24725854.2017.1417656

T. Vilaro, C. Colin and J.D. Bartout, As-Fabricated and Heat-Treated Microstructures of the Ti-6A1-4V Alloy Processed by Selective Laser Melting, Metall Mater. Trans. A Phys. Metall. Mater. Sci., 2011, 42(10), p 3190–3199. https://doi.org/10.1007/s11661-011-0731-y

A. Nassar, T. Spurgeon, and E. Reutzel, “Sensing Defects during Directed-Energy Additive Manufacturing of Metal Parts Using Optical Emissions Spectroscopy,” Solid Freeform Fabrication Symposium (SFF) (Austin, TX), Aug 2014

D. Cerniglia, M. Scafidi, A. Pantano and J. Rudlin, Inspection of Additive-Manufactured Layered Components, Ultrasonics, 2015, 62, p 292–298. https://doi.org/10.1016/j.ultras.2015.06.001

S. Everton, P. Dickens, C. Tuck and B. Dutton, Using Laser Ultrasound to Detect Subsurface Defects in Metal Laser Powder Bed Fusion Components, JOM, 2018, 70(3), p 378–383. https://doi.org/10.1007/s11837-017-2661-7

S.K. Everton, M. Hirsch, P. Stravroulakis, R.K. Leach and A.T. Clare, Review of in-situ Process Monitoring and in-situ Metrology for Metal Additive Manufacturing, Mater. Des., 2016, 95, p 431–445. https://doi.org/10.1016/j.matdes.2016.01.099

E.W. Reutzel and A.R. Nassar, A Survey of Sensing and Control Systems for Machine and Process Monitoring of Directed-Energy, Metal-Based Additive Manufacturing, Rapid Prototyp. J., 2015, 21(2), p 159–167. https://doi.org/10.1108/RPJ-12-2014-0177

V. Manvatkar, A. De and T. Debroy, Heat Transfer and Material Flow During Laser Assisted Multi-Layer Additive Manufacturing, J. Appl. Phys., 2014, 116(12), p 124905. https://doi.org/10.1063/1.4896751

J.J. Blecher, T.A. Palmer and T. Debroy, Porosity in Thick Section Alloy 690 Welds—Experiments, Modeling, Mechanism, and Remedy, Weld. J., 2016, 95(1), p 17s–26s.

A. Matsunawa, J.D. Kim, N. Seto, M. Mizutani and S. Katayama, Dynamics of Keyhole and Molten Pool in Laser Welding, J. Laser Appl., 1998, 10(6), p 247–254. https://doi.org/10.2351/1.521858

S. Katayama, Y. Kobayashi, M. Mizutani and A. Matsunawa, Effect of Vacuum on Penetration and Defects in Laser Welding, J. Laser Appl., 2001, 13(5), p 187–192. https://doi.org/10.2351/1.1404413

Y. Kawahito, M. Mizutani and S. Katayama, Elucidation of High-Power Fibre Laser Welding Phenomena of Stainless Steel and Effect of Factors on Weld Geometry, J. Phys. D Appl. Phys., 2007, 40(19), p 5854–5859. https://doi.org/10.1088/0022-3727/40/19/009

H. Zhao and T. DebRoy, Macroporosity Free Aluminum Alloy Weldments Through Numerical Simulation of Keyhole Mode Laser Welding, J. Appl. Phys., 2003, 93(12), p 10089–10096. https://doi.org/10.1063/1.1573732

S.A. Khairallah, A.T. Anderson, A. Rubenchik and W.E. King, Laser Powder-Bed Fusion Additive Manufacturing: Physics of Complex Melt Flow and Formation Mechanisms of Pores Spatter Denudation Zones, Acta Mater., 2016, 108, p 36–45. https://doi.org/10.1016/j.actamat.2016.02.014

C. Zhao, K. Fezzaa, R.W. Cunningham, H.D. Wen, F. De. Carlo, L.Y. Chen, A.D. Rollett and T. Sun, Real-Time Monitoring of Laser Powder Bed Fusion Process Using High-Speed X-Ray Imaging and Diffraction, Sci. Rep., 2017 https://doi.org/10.1038/s41598-017-03761-2

R.E. Trevisan, D.D. Schwemmer, and D.L. Olson, Chap. 3, The Fundamentals of Weld Metal Pore Formation, Materials Processing: Theory and Practices, D.L. Olson, R. Dixon, and A.L. Liby, Ed., Elsevier Science Publishers, 1990, p 79–115. https://doi.org/10.1016/B978-0-444-87427-6.50009-5

H. Fredriksson and I. Svensson, Mechanism of Pore Formation in Metals, Metall Trans. B Process Metall., 1976, 7(4), p 599–606. https://doi.org/10.1007/BF02698593

H. Taheri, M.M. Shoaib, L.W. Koester, T.A. Bigelow, P.C. Collins and L.J. Bond, Powder Based Additive Manufacturing—a Review of Types of Defects, Generation Mechanisms, Detection, Property Evaluation and Metrology, Int. J. Addit. Subtrac. Mater. Manuf., 2017, 1(2), p 172–209. https://doi.org/10.1504/IJASMM.2017.10009247

C.E. Cross, On the Origin of Weld Solidification Cracking Hot Cracking Phenomena in Welds, Springer, New York, 2005, p 3–18

J.N. Dupont, C.V. Robino and A.R. Marder, Solidification and Weldability of Nb-Bearing Superalloys, Weld. J., 1998, 77(10), p 417s–431s. https://doi.org/10.2172/515586

W. Pellini, Strain Theory of Hot Tearing, Foundry, 1952, 80(11), p 125–133.

T. Senda, F. Matsuda and G. Takano, Solidification Crack Susceptibility for Weld Metals with the Trans-Varestraint Test, Part 2: commercially used Aluminum and Aluminum Alloys, Yosetsu Gakkai-Shi, 1973, 42(1), p 48–56. https://doi.org/10.2207/qjjws1943.42.48

S. Shiva, I.A. Palani, S.K. Mishra, C.P. Paul and L.M. Kukreja, Investigations on the Influence of Composition in the Development of Ni-Ti Shape Memory Alloy Using Laser Based Additive Manufacturing, Opt. Laser Technol., 2015, 69, p 44–51. https://doi.org/10.1016/j.optlastec.2014.12.014

G.P. Dinda, L. Song and J. Mazumder, Fabrication of Ti6Al-4V Scaffolds by Direct Metal Deposition, Metall. Mater. Trans. A, Phys. Metall. Mater. Sci., 2008, 39(12), p 2914–2922. https://doi.org/10.1007/s11661-008-9634-y

A.V. Gusarov, M. Pavlov, and I. Smurov, Residual Stresses at Laser Surface Remelting and Additive Manufacturing, Lasers in Manufacturing 2011: Proceedings of the Sixth International WLT Conference on Lasers in Manufacturing, Vol 12, Part A, p 248–254. (2011). https://doi.org/10.1016/j.phpro.2011.03.032

V. Samarov and V. Goloveshkin, Modeling of Hot Isostatic Pressing, Metals Process Simulation, Vol 22B, ASM Handbook, D.U. Furrer and S.L. Semiatin, Ed., ASM International, 2010, p 335–342. https://doi.org/10.31399/asm.hb.v22b.a0005509

S.L. Kang, Part II: Solid State Sintering Models and Densification, Sintering: Densification, Grain Growth and Microstructure, Elsevier Butterworth-Heinemann, Burlington, MA, 2005

R.L. Coble, Sintering of Crystalline Solids, Part I: Intermediate and Final State Diffusion Models, J. Appl. Phys., 1961, 32, p 789–792. https://doi.org/10.1063/1.1736107

R.L. Coble and J.E. Burke, Sintering in Ceramics, Progress in Ceramic Science. J.E. Burke Ed., Pergamon Press, New York, 1963, p 197–252

I.M. Robertson and G.B. Schaffer, Review of Densification of Titanium Based Powder Systems in Press and Sinter Processing, Powder Metall., 2010, 53(2), p 146–162. https://doi.org/10.1179/174329009X434293

S.A. Matar, M.J. Edirisinghe, J.R.G. Evans and E.H. Twizell, Diffusion of Degradation Products in Ceramic Moldings during Pyrolysis: Effect of Geometry, J. Am. Ceram. Soc., 1996, 79(3), p 749–755. https://doi.org/10.1111/j.1151-2916.1996.tb07938.x

P.K. Lu and J.J. Lannutti, Effect of Density Gradients on Dimensional Tolerance during Binder Removal, J. Am. Ceram. Soc., 2000, 83(10), p 2536–2542. https://doi.org/10.1111/j.1151-2916.2000.tb01587.x

H.H. Angermann and O. Vanderbiest, Scientific and Technological Progress in Binder Burnout from Metal Injection-Molded Compacts, Mater. Manuf. Process., 1995, 10(3), p 439–451. https://doi.org/10.1080/10426919508935037

N. Kumbhar and A. Mulay, Post Processing Methods Used to Improve Surface Finish of Products Which are Manufactured by Additive Manufacturing Technologies: a Review, J. Inst. Eng. (India) C., 2018, 99(4), p 481–487.

A.R. Marder (1997) Effects of Surface Treatments on Materials Performance, Materials Selection and Design, G.E. Dieter, Ed., ASM International, 1997, p 470–490. https://doi.org/10.31399/asm.hb.v20.a0002466

H.V. Atkinson and S. Davies, Fundamental Aspects of Hot Isostatic Pressing: an Overview, Metall. Mater. Trans A Phys. Metall. Mater. Sci., 2000, 31(12), p 2981–3000.

S.J. Mashl (2015) Powder Metallurgy Processing by Hot Isostatic Pressing. In: P. Samal and J. Newkirk, Ed., Powder Metallurgy. p 260–270.

S.J. Mashl, Hot Isostatic Pressing of Castings, Casting, Vol 15 ASM International, USA, 2008, p 408–416

S. Tammas-Williams, R.I. Withers, I. Todd and P.B. Prangnell, Porosity Regrowth during Heat Treatment of Hot Isostatically Pressed Additively Manufactured Titanium Components, Scr. Mater., 2016, 122, p 72–76. https://doi.org/10.1016/j.scriptamat.2016.05.002

D.M. Hu and R. Kovacevic, Sensing, Modeling and Control for Laser-Based Additive Manufacturing, Int. J. Mach. Tools Manuf., 2003, 43(1), p 51–60. https://doi.org/10.1016/S0890-6955(02)00163-3

T. Hua, C. Jing, L. Xin, F.Y. Zhang and W.D. Huang, Research on Molten Pool Temperature in the Process of Laser Rapid Forming, J. Mater. Process. Technol., 2008, 198(1–3), p 454–462. https://doi.org/10.1016/j.jmatprotec.2007.06.090

M. Islam, T. Purtonen, H. Piili, A. Salminen and O. Nyrhila, Temperature Profile and Imaging Analysis of Laser Additive Manufacturing of Stainless Steel, Lasers Manuf., 2013, 41, p 828–835. https://doi.org/10.1016/j.phpro.2013.03.156

H. Krauss, C. Eschey, and M. Zaeh, Thermography for Monitoring the Selective Laser Melting Process, Proceedings of the Solid Freeform Fabrication Symposium, 2012

L. Wang, S.D. Felicelli, and J.E. Craig, “Thermal Modeling and Experimental Validation in the LENS Process,” 18th Solid Freeform Fabrication Symposium (Austin, TX), 2007

B. Lane, E. Whitenton, V. Madhavan and A. Donmez, Uncertainty of Temperature Measurements by Infrared Thermography for Metal Cutting Applications, Metrologia, 2013, 50(6), p 637–653. https://doi.org/10.1088/0026-1394/50/6/637

S. Moylan, E. Whitenton, B. Lane, and J. Slotwinski, Infrared Thermography for Laser-Based Powder Bed Fusion Additive Manufacturing Processes, AIP Conference Proceedings, American Institute of Physics, 2014. https://doi.org/10.1063/1.4864956

A.R. Nassar, J.S. Keist, E.W. Reutzel and T.J. Spurgeon, Intra-Layer Closed-Loop Control of Build Plan during Directed Energy Additive Manufacturing of Ti-6Al-4V, Add. Manuf., 2015, 6, p 39–52. https://doi.org/10.1016/j.addma.2015.03.005

M. Pavlov, M. Doubenskaia, and I. Smurov, Pyrometric Analysis of Thermal Processes in SLM Technology, Laser Assisted Net Shape Engineering 6, Proceedings of the LANE 2010, Part 2, Vol 5, 2010, p 523–531. https://doi.org/10.1016/j.phpro.2010.08.080

S. Karnati, N. Matta, T. Sparks, and F. Liou, Vision-Based Process Monitoring for Laser Metal Deposition Processes, Proceedings of the Solid Freeform Fabrication Symposium, 2013

J.A. Slotwinski, E.J. Garboczi and K.M. Hebenstreit, Porosity Measurements and Analysis for Metal Additive Manufacturing Process Control, J. Res. Natl. Inst. Stand. Technol., 2014, 119, p 494–528. https://doi.org/10.6028/jres.119.019

E.P. Whitenton, An Introduction for Machining Researchers to Measurement Uncertainty Sources in Thermal Images of Metal Cutting, Int. J. Mach. Machinabil. Mater., 2012, 12(3), p 195–214. https://doi.org/10.1504/IJMMM.2012.049255

S. Barua, F. Liou, J. Newkirk and T. Sparks, Vision-Based Defect Detection in Laser Metal Deposition Process, Rapid Prototyp. J., 2014, 20(1), p 77–86. https://doi.org/10.1108/RPJ-04-2012-0036

S. Clijsters, T. Craeghs, S. Buls, K. Kempen and J.P. Kruth, In Situ Quality Control of the Selective Laser Melting Process Using a High-Speed, Real-Time Melt Pool Monitoring System, Int. J. Adv. Manuf. Technol., 2014, 75(5–8), p 1089–1101. https://doi.org/10.1007/s00170-014-6214-8

T. Craeghs, S. Clijsters, E. Yasa, and J.P. Kruth, Online Quality Control of Selective Laser Melting, Proceedings of the Solid Freeform Fabrication Symposium (Austin, TX), 2011

S. Kleszczynski, J. Zur Jacobsmühlen, J. Sehrt, and G. Witt, Error Detection in Laser Beam Melting Systems by High Resolution Imaging, Proceedings of the Solid Freeform Fabrication Symposium, 2012

A. Ancona, V. Spagnolo, P.M. Lugara and M. Ferrara, Optical Sensor for Real-Time Monitoring of CO2 Laser Welding Process, Appl. Optics, 2001, 40(33), p 6019–6025. https://doi.org/10.1364/AO.40.006019

K. Bartkowiak, Direct Laser Deposition Process within Spectrographic Analysis In Situ, Laser Assisted Net Shape Engineering 6, Proceedings of the LANE 2010, Part 2, Vol 5, 2010, p 623–629. https://doi.org/10.1016/j.phpro.2010.08.090

L.J. Song and J. Mazumder, Real Time Cr Measurement Using Optical Emission Spectroscopy during Direct Metal Deposition Process, IEEE Sensors J., 2012, 12(5), p 958–964. https://doi.org/10.1109/JSEN.2011.2162316

S. Berumen, F. Bechmann, S. Lindner, J.P. Kruth, and T. Craeghs, Quality Control of Laser- and Powder Bed-Based Additive Manufacturing (AM) Technologies, Laser Assisted Net Shape Engineering 6, Proceedings of the LANE 2010, Part 2, Vol 5, 2010, p 617–622. https://doi.org/10.1016/j.phpro.2010.08.089

D.K. Pandey and S. Pandey (2010), Ultrasonics: A Technique of Material Characterization, Acoustic Waves. p 397–430

H. Cho, S. Ogawa and M. Takemoto, Non-Contact Laser Ultrasonics for Detecting Subsurface Lateral Defects, NDTE Int., 1996, 29(5), p 301–306. https://doi.org/10.1016/S0963-8695(96)00033-3

H. Gong, K. Rafi, H. Gu, T. Starr and B. Stucker, Analysis of Defect Generation in Ti-6Al-4V Parts Made Using Powder Bed Fusion Additive Manufacturing Processes, Add. Manuf., 2014, 1–4, p 87–98. https://doi.org/10.1016/j.addma.2014.08.002

R.J. Smith, M. Hirsch, R. Patel, W.Q. Li, A.T. Clare and S.D. Sharples, Spatially Resolved Acoustic Spectroscopy for Selective Laser Melting, J. Mater. Process. Technol., 2016, 236, p 93–102. https://doi.org/10.1016/j.jmatprotec.2016.05.005

L. Chehami, E. Moulin, J. Rosnyde, C. Prada, E. Chatelet, G. Lacerra, K. Gryllias and F. Massi, Nonlinear Secondary Noise Sources for Passive Defect Detection Using Ultrasound Sensors, J. Sound Vib., 2017, 386, p 283–294. https://doi.org/10.1016/j.jsv.2016.10.006

T. Tanaka and Y. Izawa, Nondestructive Detection of Small Internal Defects in Carbon Steel by Laser Ultrasonics, Jpn. J. Appl. Phys., 2001. https://doi.org/10.1143/JJAP.40.1477

F. Wang, H. Mao, D. Zhang, X. Zhao and Y. Shen, Online Study of Cracks during Laser Cladding Process Based on Acoustic Emission Technique and Finite Element Analysis, Appl. Surf. Sci., 2008, 255(5), p 3267–3275. https://doi.org/10.1016/j.apsusc.2008.09.039

A.P. Arguelles and J.A. Turner, Ultrasonic Attenuation of Polycrystalline Materials with a Distribution of Grain Sizes, J. Acoust. Soc. Am., 2017, 141(6), p 4347–4353. https://doi.org/10.1121/1.4984290

M.P. Blodgett and D. Eylon, The Influence of Texture and Phase Distortion on Ultrasonic Attenuation in Ti-6Al-4V, J. Nondestr. Eval., 2001, 20(1), p 1–16.

T. Garcin, J.H. Schmitt, and M. Militzer, “Application of Laser Ultrasonics to Monitor Microstructure Evolution in Inconel 718 Superalloy,” Eurosuperalloys 2014—Second European Symposium on Superalloys and Their Applications, 201410.1051/matecconf/20141407001

T. Garcin, J.H. Schmitt and M. Militzer, In-Situ Laser Ultrasonic Grain Size Measurement in Superalloy Inconel 718, J. Alloy. Compd., 2016, 670, p 329–336. https://doi.org/10.1016/j.jallcom.2016.01.222

X.B. Li, X. Han, A.P. Arguelles, Y. Song and H. Hu, Evaluating Grain Size in Polycrystals with Rough Surfaces by Corrected Ultrasonic Attenuation, Ultrasonics, 2017, 78, p 23–29. https://doi.org/10.1016/j.ultras.2017.02.018

O.I. Lobkis and S.I. Rokhlin, Characterization of Polycrystals with Elongated Duplex Microstructure by Inversion of Ultrasonic Backscattering Data, Appl. Phys. Lett., 2010 https://doi.org/10.1063/1.3416910

A. Shinbine, T. Garcin and C. Sinclair, In-Situ Laser Ultrasonic Measurement of the hcp to bcc Transformation in Commercially Pure Titanium, Mater. Charact., 2016, 117, p 57–64. https://doi.org/10.1016/j.matchar.2016.04.018

H.L. Wei, J.W. Elmer and T. DebRoy, Origin of Grain Orientation During Solidification of an Aluminum Alloy, Acta Mater., 2016, 115, p 123–131. https://doi.org/10.1016/j.actamat.2016.05.057

H. Rieder, A. Dillhöfer, M. Spies, J. Bamberg, and T. Hess, “Online Monitoring of Additive Manufacturing Processes Using Ultrasound,” Eleventh European Conference on Non-Destructive Testing (ECNDT) (Prague, Czech Republic), Oct 2014. https://doi.org/10.1063/1.4914609

M. Klein and J. Sears, “Laser Ultrasonic Inspection of Laser Cladded 316LSS and Ti-6-4”, International Congress on Applications of Lasers and Electro-Optics, Laser Inst. Am., 2004. https://doi.org/10.2351/1.5060183

R.J. Dewhurst, D.A. Hutchins, S.B. Palmer and C.B. Scruby, Quantitative Measurements of Laser-Generated Acoustic Waveforms, J. Appl. Phys., 1982, 53(6), p 4064–4071. https://doi.org/10.1063/1.331270

L. Drain and C.B. Scruby, Laser Ultrasonics Techniques and Applications, 1st ed. Routledge, New York, 1990.