Defects engineering induced room temperature ferromagnetism in transition metal doped MoS 2
Tài liệu tham khảo
Dietl, 2000, Zener model description of ferromagnetism in zinc-blende magnetic semiconductors, Science, 287, 1019, 10.1126/science.287.5455.1019
Chen, 2011, Enhancing the Curie temperature of ferromagnetic semiconductor (Ga, Mn)As to 200K via nanostructure engineering, Nano Lett., 11, 2584, 10.1021/nl201187m
Zhou, 2010, Hysteresis in the magnetotransport of manganese-doped germanium: evidence for carrier-mediated ferromagnetism, Phys. Rev. B, 81, 165204, 10.1103/PhysRevB.81.165204
Wang, 2015, Ferromagnetism and crossover of positive magnetoresistance to negative magnetoresistance in Na-doped ZnO, Chem. Mater., 27, 1285, 10.1021/cm504261q
Ma, 2008, Inducing ferromagnetism in ZnO through doping of nonmagnetic elements, Appl. Phys. Lett., 93, 042514, 10.1063/1.2966360
Zhou, 2008, Room temperature ferromagnetism in carbon-implanted ZnO, Appl. Phys. Lett., 93, 232507, 10.1063/1.3048076
Wang, 2015, Zn vacancy induced ferromagnetism in K doped ZnO, J. Mater. Chem. C, 10.1039/C5TC02936H
Yi, 2008, Ferromagnetism in ZnO nanowires derived from electro-deposition on AAO template and subsequent oxidation, Adv. Mater., 20, 1170, 10.1002/adma.200702387
Xu, 2008, Room temperature ferromagnetism in ZnO films due to defects, Appl. Phys. Lett., 92, 82508, 10.1063/1.2885730
Novoselov, 2004, Electric field effect in atomically thin carbon films, Science, 306, 666, 10.1126/science.1102896
Huang, 2012, Effective control of the charge and magnetic states of transition-metal atoms on single-layer boron nitride, Phys. Rev. Lett., 108, 206802, 10.1103/PhysRevLett.108.206802
Balandin, 2008, Superior thermal conductivity of single-layer graphene, Nano Lett., 8, 902, 10.1021/nl0731872
Zhang, 2005, Experimental observation of the quantum Hall effect and Berry's phase in graphene, Nature, 438, 201, 10.1038/nature04235
Novoselov, 2007, Room-temperature quantum Hall effect in graphene, Science, 315, 1379, 10.1126/science.1137201
Mak, 2010, Atomically thin MoS 2: a new direct-gap semiconductor, Phys. Rev. Lett., 105, 136805, 10.1103/PhysRevLett.105.136805
Wang, 2012, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides, Nat. Nanotechnol., 7, 699, 10.1038/nnano.2012.193
Radisavljevic, 2011, Nature, Nanotechnology, 6, 147
Chacko, 2016, Wasp-waisted magnetism in hydrothermally grown MoS2 nanoflakes, Mater. Res. Express, 3, 116102, 10.1088/2053-1591/3/11/116102
Tongay, 2012, Magnetic properties of MoS2: existence of ferromagnetism, Appl. Phys. Lett., 101, 123105, 10.1063/1.4753797
Yun, 2015, Strain-induced magnetism in single-layer MoS2: origin and manipulation, J. Phys. Chem. C, 119, 2822, 10.1021/jp510308a
Mishra, 2013, Long-range ferromagnetic ordering in manganese-doped two-dimensional dichalcogenides, Phys. Rev. B, 88, 144409, 10.1103/PhysRevB.88.144409
Ramasubramaniam, 2013, Mn-doped monolayer MoS2: an atomically thin dilute magnetic semiconductor, Phys. Rev. B, 87, 195201, 10.1103/PhysRevB.87.195201
Lin, 2014, Charge and magnetic states of Mn-, Fe-, and Co-doped monolayer MoS2, J. Appl. Phys., 116, 044311, 10.1063/1.4891495
Cheng, 2013, Prediction of two-dimensional diluted magnetic semiconductors: doped monolayer MoS2 systems, Phys. Rev. B, 87, 100401, 10.1103/PhysRevB.87.100401
Zheng, 2014, Tuning magnetism of monolayer MoS2 by doping vacancy and applying strain, Appl. Phys. Lett., 104, 132403, 10.1063/1.4870532
Tao, 2014, Strain-induced magnetism in MoS2 monolayer with defects, J. Appl. Phys., 115, 054305, 10.1063/1.4864015
De Almeida, 2012, Defects in hexagonal-AlN sheets by first-principles calculations, Eur. Phys. J. B, 85, 48, 10.1140/epjb/e2011-20538-6
dos Santos, 2016, Van der Waals stacks of few-layer h-AlN with graphene: an ab initio study of structural, interaction and electronic properties, Nanotechnology, 27, 145601, 10.1088/0957-4484/27/14/145601
Wang, 2016, Electronic and magnetic properties of transition-metal-doped monolayer black phosphorus by defect engineering, J. Phys. Chem. C, 120, 9773, 10.1021/acs.jpcc.6b00981
Kresse, 1996, Software VASP, Vienna (1999), Phys. Rev. B, 54, 169
Perdew, 1996, Generalized gradient approximation made simple, Phys. Rev. Lett., 77, 3865, 10.1103/PhysRevLett.77.3865
Blöchl, 1994, Projector augmented-wave method, Phys. Rev. B, 50, 17953, 10.1103/PhysRevB.50.17953
Yue, 2013, Functionalization of monolayer MoS2 by substitutional doping: a first-principles study, Phys. Lett. A, 377, 1362, 10.1016/j.physleta.2013.03.034
Andriotis, 2014, Tunable magnetic properties of transition metal doped MoS2, Phys. Rev. B, 90, 125304, 10.1103/PhysRevB.90.125304
Huang, 2013, Density functional theory study of Fe adatoms adsorbed monolayer and bilayer MoS2 sheets, J. Appl. Phys., 114, 083706, 10.1063/1.4818952
Qi, 2014, Strain tuning of magnetism in Mn doped MoS2 monolayer, J. Phys. Condens. Matter, 26, 256003, 10.1088/0953-8984/26/25/256003
Wilson, 1969, The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties, Adv. Phys., 18, 193, 10.1080/00018736900101307
Kan, 2014, Structures and phase transition of a MoS2 monolayer, J. Phys. Chem. C, 118, 1515, 10.1021/jp4076355
Cheng, 2013, Prediction of two-dimensional diluted magnetic semiconductors: Doped monolayer MoS2 systems, Phys. Rev. B
Wang, 2016, Electronic and magnetic properties of Co doped MoS2 monolayer, Sci. Rep., 6, 24153, 10.1038/srep24153
Lee, 2014, Tailoring the coercivity in ferromagnetic ZnO thin films by 3d and 4f elements codoping, Appl. Phys. Lett., 104, 012405, 10.1063/1.4861165
Li, 2012, From bulk to monolayer MoS2: evolution of Raman scattering, Adv. Funct. Mater., 22, 1385, 10.1002/adfm.201102111
Bera, 2014, Insights into vibrational and electronic properties of MoS2 using Raman, photoluminescence, and transport studies, 155
Chakraborty, 2012, Symmetry-dependent phonon renormalization in monolayer MoS2 transistor, Phys. Rev. B, 85, 161403, 10.1103/PhysRevB.85.161403
Mao, 2013, Solvatochromic effect on the photoluminescence of MoS2 monolayers, Small, 9, 1312, 10.1002/smll.201202982
Buscema, 2014, The effect of the substrate on the Raman and photoluminescence emission of single-layer MoS2, Nano Res., 7, 561, 10.1007/s12274-014-0424-0
Xia, 2012, Origin of significant visible-light absorption properties of Mn-doped TiO2 thin films, Acta Mater., 60, 1974, 10.1016/j.actamat.2012.01.006
Biesinger, 2011, Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni, Appl. Surf. Sci., 257, 2717, 10.1016/j.apsusc.2010.10.051
Xue, 2012, Effects of Mn doping on surface enhanced Raman scattering properties of TiO2 nanoparticles, Spectrochim. Acta A Mol. Biomol. Spectrosc., 95, 213, 10.1016/j.saa.2012.04.101
Kennedy, 2013, Intrinsic magnetic order and inhomogeneous transport in Gd-implanted zinc oxide, Phys. Rev. B, 88, 214423, 10.1103/PhysRevB.88.214423