Defects engineering induced room temperature ferromagnetism in transition metal doped MoS 2

Materials and Design - Tập 121 - Trang 77-84 - 2017
Yiren Wang1, Li-Ting Tseng1, Peter P. Murmu2, Nina Bao3, John Kennedy2, Mihail Ionesc4, Jun Ding3, Kiyonori Suzuki5, Sean Li1, Jiabao Yi1
1School of Materials Science and Engineering, University of New South Wales, Kensington, NSW, 2052, Australia
2National Isotope Centre, GNS Science, P.O. Box 31312, Lower Hutt 5010, New Zealand
3Department of Materials Science and Engineering, National University of Singapore 119260, Singapore
4Australian Nuclear Science and Technology Organization, (ANSTO), New Illawarra Road, Lucas Heights, NSW 2234, Australia
5Department of Materials Science and Engineering, Monash University, 3800, Victoria, Australia

Tài liệu tham khảo

Dietl, 2000, Zener model description of ferromagnetism in zinc-blende magnetic semiconductors, Science, 287, 1019, 10.1126/science.287.5455.1019 Chen, 2011, Enhancing the Curie temperature of ferromagnetic semiconductor (Ga, Mn)As to 200K via nanostructure engineering, Nano Lett., 11, 2584, 10.1021/nl201187m Zhou, 2010, Hysteresis in the magnetotransport of manganese-doped germanium: evidence for carrier-mediated ferromagnetism, Phys. Rev. B, 81, 165204, 10.1103/PhysRevB.81.165204 Wang, 2015, Ferromagnetism and crossover of positive magnetoresistance to negative magnetoresistance in Na-doped ZnO, Chem. Mater., 27, 1285, 10.1021/cm504261q Ma, 2008, Inducing ferromagnetism in ZnO through doping of nonmagnetic elements, Appl. Phys. Lett., 93, 042514, 10.1063/1.2966360 Zhou, 2008, Room temperature ferromagnetism in carbon-implanted ZnO, Appl. Phys. Lett., 93, 232507, 10.1063/1.3048076 Wang, 2015, Zn vacancy induced ferromagnetism in K doped ZnO, J. Mater. Chem. C, 10.1039/C5TC02936H Yi, 2008, Ferromagnetism in ZnO nanowires derived from electro-deposition on AAO template and subsequent oxidation, Adv. Mater., 20, 1170, 10.1002/adma.200702387 Xu, 2008, Room temperature ferromagnetism in ZnO films due to defects, Appl. Phys. Lett., 92, 82508, 10.1063/1.2885730 Novoselov, 2004, Electric field effect in atomically thin carbon films, Science, 306, 666, 10.1126/science.1102896 Huang, 2012, Effective control of the charge and magnetic states of transition-metal atoms on single-layer boron nitride, Phys. Rev. Lett., 108, 206802, 10.1103/PhysRevLett.108.206802 Balandin, 2008, Superior thermal conductivity of single-layer graphene, Nano Lett., 8, 902, 10.1021/nl0731872 Zhang, 2005, Experimental observation of the quantum Hall effect and Berry's phase in graphene, Nature, 438, 201, 10.1038/nature04235 Novoselov, 2007, Room-temperature quantum Hall effect in graphene, Science, 315, 1379, 10.1126/science.1137201 Mak, 2010, Atomically thin MoS 2: a new direct-gap semiconductor, Phys. Rev. Lett., 105, 136805, 10.1103/PhysRevLett.105.136805 Wang, 2012, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides, Nat. Nanotechnol., 7, 699, 10.1038/nnano.2012.193 Radisavljevic, 2011, Nature, Nanotechnology, 6, 147 Chacko, 2016, Wasp-waisted magnetism in hydrothermally grown MoS2 nanoflakes, Mater. Res. Express, 3, 116102, 10.1088/2053-1591/3/11/116102 Tongay, 2012, Magnetic properties of MoS2: existence of ferromagnetism, Appl. Phys. Lett., 101, 123105, 10.1063/1.4753797 Yun, 2015, Strain-induced magnetism in single-layer MoS2: origin and manipulation, J. Phys. Chem. C, 119, 2822, 10.1021/jp510308a Mishra, 2013, Long-range ferromagnetic ordering in manganese-doped two-dimensional dichalcogenides, Phys. Rev. B, 88, 144409, 10.1103/PhysRevB.88.144409 Ramasubramaniam, 2013, Mn-doped monolayer MoS2: an atomically thin dilute magnetic semiconductor, Phys. Rev. B, 87, 195201, 10.1103/PhysRevB.87.195201 Lin, 2014, Charge and magnetic states of Mn-, Fe-, and Co-doped monolayer MoS2, J. Appl. Phys., 116, 044311, 10.1063/1.4891495 Cheng, 2013, Prediction of two-dimensional diluted magnetic semiconductors: doped monolayer MoS2 systems, Phys. Rev. B, 87, 100401, 10.1103/PhysRevB.87.100401 Zheng, 2014, Tuning magnetism of monolayer MoS2 by doping vacancy and applying strain, Appl. Phys. Lett., 104, 132403, 10.1063/1.4870532 Tao, 2014, Strain-induced magnetism in MoS2 monolayer with defects, J. Appl. Phys., 115, 054305, 10.1063/1.4864015 De Almeida, 2012, Defects in hexagonal-AlN sheets by first-principles calculations, Eur. Phys. J. B, 85, 48, 10.1140/epjb/e2011-20538-6 dos Santos, 2016, Van der Waals stacks of few-layer h-AlN with graphene: an ab initio study of structural, interaction and electronic properties, Nanotechnology, 27, 145601, 10.1088/0957-4484/27/14/145601 Wang, 2016, Electronic and magnetic properties of transition-metal-doped monolayer black phosphorus by defect engineering, J. Phys. Chem. C, 120, 9773, 10.1021/acs.jpcc.6b00981 Kresse, 1996, Software VASP, Vienna (1999), Phys. Rev. B, 54, 169 Perdew, 1996, Generalized gradient approximation made simple, Phys. Rev. Lett., 77, 3865, 10.1103/PhysRevLett.77.3865 Blöchl, 1994, Projector augmented-wave method, Phys. Rev. B, 50, 17953, 10.1103/PhysRevB.50.17953 Yue, 2013, Functionalization of monolayer MoS2 by substitutional doping: a first-principles study, Phys. Lett. A, 377, 1362, 10.1016/j.physleta.2013.03.034 Andriotis, 2014, Tunable magnetic properties of transition metal doped MoS2, Phys. Rev. B, 90, 125304, 10.1103/PhysRevB.90.125304 Huang, 2013, Density functional theory study of Fe adatoms adsorbed monolayer and bilayer MoS2 sheets, J. Appl. Phys., 114, 083706, 10.1063/1.4818952 Qi, 2014, Strain tuning of magnetism in Mn doped MoS2 monolayer, J. Phys. Condens. Matter, 26, 256003, 10.1088/0953-8984/26/25/256003 Wilson, 1969, The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties, Adv. Phys., 18, 193, 10.1080/00018736900101307 Kan, 2014, Structures and phase transition of a MoS2 monolayer, J. Phys. Chem. C, 118, 1515, 10.1021/jp4076355 Cheng, 2013, Prediction of two-dimensional diluted magnetic semiconductors: Doped monolayer MoS2 systems, Phys. Rev. B Wang, 2016, Electronic and magnetic properties of Co doped MoS2 monolayer, Sci. Rep., 6, 24153, 10.1038/srep24153 Lee, 2014, Tailoring the coercivity in ferromagnetic ZnO thin films by 3d and 4f elements codoping, Appl. Phys. Lett., 104, 012405, 10.1063/1.4861165 Li, 2012, From bulk to monolayer MoS2: evolution of Raman scattering, Adv. Funct. Mater., 22, 1385, 10.1002/adfm.201102111 Bera, 2014, Insights into vibrational and electronic properties of MoS2 using Raman, photoluminescence, and transport studies, 155 Chakraborty, 2012, Symmetry-dependent phonon renormalization in monolayer MoS2 transistor, Phys. Rev. B, 85, 161403, 10.1103/PhysRevB.85.161403 Mao, 2013, Solvatochromic effect on the photoluminescence of MoS2 monolayers, Small, 9, 1312, 10.1002/smll.201202982 Buscema, 2014, The effect of the substrate on the Raman and photoluminescence emission of single-layer MoS2, Nano Res., 7, 561, 10.1007/s12274-014-0424-0 Xia, 2012, Origin of significant visible-light absorption properties of Mn-doped TiO2 thin films, Acta Mater., 60, 1974, 10.1016/j.actamat.2012.01.006 Biesinger, 2011, Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni, Appl. Surf. Sci., 257, 2717, 10.1016/j.apsusc.2010.10.051 Xue, 2012, Effects of Mn doping on surface enhanced Raman scattering properties of TiO2 nanoparticles, Spectrochim. Acta A Mol. Biomol. Spectrosc., 95, 213, 10.1016/j.saa.2012.04.101 Kennedy, 2013, Intrinsic magnetic order and inhomogeneous transport in Gd-implanted zinc oxide, Phys. Rev. B, 88, 214423, 10.1103/PhysRevB.88.214423