Defects and transport in SrFe1−xCoxO3−δ

Ionics - Tập 5 - Trang 434-443 - 1999
A. Holt1, T. Norby1, R. Glenne2
1Centre for Materials Science, University of Oslo, Oslo, Norway
2Norsk Hydro, Research & Development Centre, Porsgrunn, Norway

Tóm tắt

The non-stoichiometry and chemical diffusion coefficient of SrFe1−xCoxO3-δ have been measured by steady state and transient thermogravimetry in the temperature range 750–1200 °C at different oxygen partial pressures. At high oxygen partial pressures, the chemical diffusion coefficient was in the range 1·10−4 – 7·10−4 cm2/s. This, combined with high concentration of disordered vacancies make these materials perhaps the fastest solid oxygen ion diffusers known at high temperatures and high oxygen partial pressures. However, due to the high concentration of defects in SrFe1−xCoxO3-δ the compound transforms from a cubic (disordered) perovskite to a brownmillerite type of structure under reduced oxygen partial pressures below approx. 900 °C. Due to this phase transition, the mobility of oxygen vacancies in SrFe1−xCoxO3-δ decreases up to about an order of magnitude at 850 °C. We also observe an ordering effect at 1000 °C, although smaller in size, and this is suggested to be due to short range ordering of four-coordinated polyhedra of Fe. For possible use as oxygen separation membranes, phase stability against sulphur and carbon containing atmospheres is also discussed with respect to the formation of carbonates and sulphates.

Tài liệu tham khảo

B. Ma, U. Balachandran, J.-H. Park and C.U. Segre, Solid State Ionics83, 65 (1996). B. Ma, U. Balachandran, J.-H. Park and C.U. Segre, J. Electrochem. Soc.143, 1736 (1996). B. Ma and U. Balachandran, Solid State Ionics100, 53 (1997). B. Ma, J.-H. Park and U. Balachandran, J. Electrochem. Soc.144, 2816 (1997). B. Ma and U. Balachandran, Materials Research Bulletin33, 223 (1998). S. Guggilla and A. Manthiram, J. Electrochem. Soc.144, L120-L121 (1997). S. Kim, Y.L. Yang, R. Christoffersen, A.J. Jacobson, Solid State Ionics109, 187 (1998). A. Holt, Y. Larring and T. Norby, in: Nordic Seminar on Diffusion and Concentration of Mobile Species in Fuel Cell Materials (B. Zachau-Christiansen, Ed.) 25–27 March 1998, Geilo, Norway, Nordic Energy Research Programme. H. Fjellvåg, B.C. Hauback and R. Bredesen, J. Mater. Chem.7, 2415 (1997). A. Holt, Y. Larring, V. Lynum and T. Norby, “Non-stoichiometry, Phase Transitions and Transport Properties of Sr4Fe6−xCoxO13”, in preparation. J. Mizusaki, M. Okayasu, S. Yamauchi and K. Fueki, Journal of Solid State Chemistry99, 166 (1992). CrystalDesigner, A. Holt, 〈http://www.crystaldesigner.no/〉 J.-C. Grenier, S. Ghodbane, G. Demazeau, M. Pouchard and P. Hagenmuller, Mat. Res. Bull.14, 831 (1979). D.M. Smyth, to be published. B.C.H. Steele, Mat. Sci. and Eng. B13, 79 (1992). S. Aasland, I.L. Tangen, K. Wiik and R. Ødegård, “Oxygen permeation of SrFe2/3Co1/3O3-δ” submitted to Solid State Ionics. S. Diethelm, A. Closset, K. Nisancioglu, T. Gür, J. Van Herle, and A.J. McEvoy, J. Electrochem. Soc.146, 2606 (1999). Y. Hirata and A. Kato, J. Chem. Soc. Jpn.10, 1309 (1979). G.L. Messing et al., J. Am. Ceram. Soc.76, 2703 (1993). C.I. Electronics Ltd, Brunel Road, Salisbury, Wiltshire SP2 7PX, England. Win Wei, S. Jørgensen, Centre for Material Science, University of Oslo, Gaustadalleen 21, N-0349 Oslo, Norway. J. Crank, Oxford Science Publications, 1975, page 47. Igor Pro 3.x, WaveMetrics Inc., 〈http://www.wavemetrics.com/〉 W.H. Press et al., “Numerical Recipes in C. The Art of Scientific Computing” Second Edition, Cambridge University Press (1996) p. 681. I.J. McColm and N.J. Clarck, in: High Performance Ceramics, Edited by Blackie and Son LTD, London (1988) 224–236. S.B. Adler, J.A. Reimer, J. Baltisberger, and U. Werner, J. Am. Chem. Soc.116, 675 (1994). C. Wagner, Progress in Solid-State Chemistry10, 3 (1975). C.-R. Song and H.-I. Yoo, Solid State Ionics120, 141 (1999). H.-I. Yoo and C.-R. Song, 12th International Conference on Solid State Ionics, Halkidiki, Extended abstracts, ISSI (1999) C-IN-06.