Defective quiescence entry promotes the fermentation performance of bottom-fermenting brewer's yeast

Journal of Bioscience and Bioengineering - Tập 122 - Trang 577-582 - 2016
Mayu Oomuro1, Taku Kato1, Yan Zhou2, Daisuke Watanabe2, Yasuo Motoyama1, Hiromi Yamagishi3, Takeshi Akao2, Masayuki Aizawa1
1Department of Brewing Microbiology, Asahi Breweries Ltd., 1-1-21 Midori, Moriya, Ibaraki 302-0106, Japan
2National Research Institute of Brewing, 3-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-0046, Japan
3Quality Control Center, Asahi Breweries Ltd., 1-1-21 Midori, Moriya, Ibaraki 302-0106, Japan

Tài liệu tham khảo

Saerens, 2008, Parameters affecting ethyl ester production by Saccharomyces cerevisiae during fermentation, Appl. Environ. Microbiol., 74, 454, 10.1128/AEM.01616-07 Pires, 2014, Yeast: the soul of beer's aroma — a review of flavour-active esters and higher alcohols produced by the brewing yeast, Appl. Microbiol. Biotechnol., 98, 1937, 10.1007/s00253-013-5470-0 Soares da Costa, 2004, Further insights into the role of methional and phenylacetaldehyde in lager beer flavor stability, J. Agric. Food Chem., 52, 7911, 10.1021/jf049178l Peppard, 1981, Malt flavour—transformation of carbonyl compounds by yeast during fermentation, J. Inst. Brew., 87, 386, 10.1002/j.2050-0416.1981.tb04055.x Brányik, 2008, A review of flavour formation in continuous beer fermentations, J. Inst. Brew., 114, 3, 10.1002/j.2050-0416.2008.tb00299.x Vidgren, 2009, Improved fermentation performance of a lager yeast after repair of its AGT1 maltose and maltotriose transporter genes, Appl. Environ. Microbiol., 75, 2333, 10.1128/AEM.01558-08 Huuskonen, 2010, Selection from industrial lager yeast strains of variants with improved fermentation performance in very-high-gravity worts, Appl. Environ. Microbiol., 76, 1563, 10.1128/AEM.03153-09 Udeh, 2013, Role of magnesium ions on yeast performance during very high gravity fermentation, J. Brew. Distill., 4, 19, 10.5897/JBD2013.0041 Blieck, 2007, Isolation and characterization of brewer's yeast variants with improved fermentation performance under high-gravity conditions, Appl. Environ. Microbiol., 73, 815, 10.1128/AEM.02109-06 Beltran, 2007, Effect of low-temperature fermentation on yeast nitrogen metabolism, World J. Microbiol. Biotechnol., 23, 809, 10.1007/s11274-006-9302-6 Bromberg, 1997, Requirements for zinc, manganese, calcium and magnesium in wort, J. Am. Soc. Brew. Chem., 55, 123 Maddox, 1970, Effect of zinc and cobalt on yeast growth and fermentation, J. Inst. Brew., 76, 262, 10.1002/j.2050-0416.1970.tb03293.x Jacobsen, 1982, A fermentation assay for wort element availability, J. Inst. Brew., 88, 387, 10.1002/j.2050-0416.1982.tb04129.x Rees, 1997, The effects of increased magnesium and calcium concentrations on yeast fermentation performance in high gravity worts, J. Inst. Brew., 103, 287, 10.1002/j.2050-0416.1997.tb00958.x Gibson, 2007, Yeast responses to stresses associated with industrial brewery handling, FEMS Microbiol. Rev., 31, 535, 10.1111/j.1574-6976.2007.00076.x Panchal, 1980, The effect of osmotic pressure on the production and excretion of ethanol and glycerol by a brewing yeast strain, J. Inst. Brew., 86, 207, 10.1002/j.2050-0416.1980.tb06867.x Albers, 1996, Influence of the nitrogen source on Saccharomyces cerevisiae anaerobic growth and product formation, Appl. Environ. Microbiol., 62, 3187, 10.1128/AEM.62.9.3187-3195.1996 Redón, 2009, Effect of lipid supplementation upon Saccharomyces cerevisiae lipid composition and fermentation performance at low temperature, Eur. Food Res. Technol., 228, 833, 10.1007/s00217-008-0996-6 Moonjai, 2003, Linoleic acid supplementation of a cropped brewing lager strain: effects on subsequent fermentation performance with serial repitching, J. Inst. Brew., 109, 262, 10.1002/j.2050-0416.2003.tb00167.x Watanabe, 2012, A loss-of-function mutation in the PAS kinase Rim15p is related to defective quiescence entry and high fermentation rates of Saccharomyces cerevisiae sake yeast strains, Appl. Environ. Microbiol., 78, 4008, 10.1128/AEM.00165-12 Watanabe, D., Zhou, Y., Hirata, A., Sugimoto, Y., Takagi, K., Akao, T., Ohya, Y., Takagi, H. and Shimoi, H.: Inhibitory role of Greatwall-like protein kinase Rim15p in alcoholic fermentation via upregulating the UDP-glucose synthesis pathway in Saccharomyces cerevisiae, Appl. Environ. Microbiol., http://aem.asm.org/content/early/2015/10/20/AEM.02977-15 (available online 23 October 2015). Watanabe, 2011, Ethanol fermentation driven by elevated expression of the G1 cyclin gene CLN3 in sake yeast, J. Biosci. Bioeng., 112, 577, 10.1016/j.jbiosc.2011.08.010 Urbanczyk, 2011, Sake yeast strains have difficulty in entering a quiescent state after cell growth cessation, J. Biosci. Bioeng., 112, 44, 10.1016/j.jbiosc.2011.03.001 Watanabe, 2011, Enhancement of the initial rate of ethanol fermentation due to dysfunction of yeast stress response components Msn2p and/or Msn4p, Appl. Environ. Microbiol., 77, 934, 10.1128/AEM.01869-10 Cameroni, 2004, The novel yeast PAS kinase Rim15 orchestrates G0-associated antioxidant defense mechanisms, Cell Cycle, 3, 462, 10.4161/cc.3.4.791 Roosen, 2005, PKA and Sch9 control a molecular switch important for the proper adaptation to nutrient availability, Mol. Microbiol., 55, 862, 10.1111/j.1365-2958.2004.04429.x Zhang, 2009, Gis1 is required for transcriptional reprogramming of carbon metabolism and the stress response during transition into stationary phase in yeast, Microbiology, 155, 1690, 10.1099/mic.0.026377-0 Tyers, 1993, Comparison of the Saccharomyces cerevisiae G1 cyclins: Cln3 may be an upstream activator of Cln1, Cln2 and other cyclins, EMBO J., 12, 1955, 10.1002/j.1460-2075.1993.tb05845.x Dirick, 1995, Roles and regulation of Cln-Cdc28 kinases at the start of the cell cycle of Saccharomyces cerevisiae, EMBO J., 14, 4803, 10.1002/j.1460-2075.1995.tb00162.x Nash, 1988, The WHI1+ gene of Saccharomyces cerevisiae tethers cell division to cell size and is a cyclin homolog, EMBO J., 7, 4335, 10.1002/j.1460-2075.1988.tb03332.x Mendenhall, 1998, Regulation of Cdc28 cyclin-dependent protein kinase activity during the cell cycle of the yeast Saccharomyces cerevisiae, Microbiol. Mol. Biol. Rev., 62, 1191, 10.1128/MMBR.62.4.1191-1243.1998 Truman, 2012, CDK-dependent Hsp70 phosphorylation controls G1 cyclin abundance and cell-cycle progression, Cell, 151, 1308, 10.1016/j.cell.2012.10.051 Valk, 2013, Multiple Pho85-dependent mechanisms control G1 cyclin abundance in response to nutrient stress, Mol. Cell Biol., 33, 1270, 10.1128/MCB.00086-13 Goldstein, 1999, Three new dominant drug resistance cassettes for gene disruption in Saccharomyces cerevisiae, Yeast, 15, 1541, 10.1002/(SICI)1097-0061(199910)15:14<1541::AID-YEA476>3.0.CO;2-K Gietz, 2002, Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method, Methods Enzymol., 350, 87, 10.1016/S0076-6879(02)50957-5 Watanabe, 2011, Automatic measurement of sake fermentation kinetics using multi-channel gas monitor system, J. Biosci. Bioeng., 112, 54, 10.1016/j.jbiosc.2011.03.007 Libkind, 2011, Microbe domestication and the identification of the wild genetic stock of lager-brewing yeast, Proc. Natl. Acad. Sci. USA, 108, 14539, 10.1073/pnas.1105430108 Boynton, 2014, The ecology and evolution of non-domesticated Saccharomyces species, Yeast, 31, 449 Zaragoza, 1998, Rapamycin induces the G0 program of transcriptional repression in yeast by interfering with the TOR signaling pathway, Mol. Cell Biol., 18, 4463, 10.1128/MCB.18.8.4463 Minato, 2009, Expression profiling of the bottom fermenting yeast Saccharomyces pastorianus orthologous genes using oligonucleotide microarrays, Yeast, 26, 147, 10.1002/yea.1654