Defective Bi2WO6‐Supported Cu Nanoparticles as Efficient and Stable Photoelectrocatalytic for Water Splitting in Near‐Neutral Media

Energy Technology - Tập 6 Số 11 - Trang 2247-2255 - 2018
Junqi Li1, Zheng Liang1, Yi Qin1, Liu Guo1, Nan Lei1, Qianqian Song1
1School of Materials Science and Engineering Shaanxi University of Science and Technology Xi'an 710021 P. R. China

Tóm tắt

AbstractDefective Bi2WO6‐supported Cu nanoparticles photoelectrocatalyst were successfully synthesized via an etching approach by using NaBH4 as reducing agent. The as‐prepared Cu/Bi2WO6‐1 was dominated by CuO and Cu and Cu/Bi2WO6‐2 was dominated by metallic Cu, confirmed by XPS and TEM analyses. These etching pretreatments also induced the formation of defect sites such as oxygen vacancies and W5+. The presence of oxygen vacancies could significantly increase the photogenerated electrons capture abilities. Metallic Cu nanocrystals on the surface of Bi2WO6 photoanodes are beneficial for the photoresponse range as well as the separation and consumption of photogenerated carriers due to the surface plasmon resonance effect of Cu. Photoelectrochemical studies demonstrated that Cu/Bi2WO6‐x exhibited a markedly improved PEC performance in water splitting reaction as compared to that of Bi2WO6 which mainly because of the light harvesting efficiency (ηabs) and the interfacial charge transfer efficiency. Importantly, Cu/Bi2WO6‐2 exhibited the best PEC activity with a high current density and good stability under neutral conditions, which may be ascribed to the defective Bi2WO6 structure in combination with surface ligand engineering and the synergistic effect of oxygen vacancies and metallic Cu. In addition, the function mechanism of CuO, metallic Cu and oxygen vacancies were discussed in details.

Từ khóa


Tài liệu tham khảo

10.1016/j.nantod.2015.06.001

10.1039/C4CS00448E

10.1021/cr1002326

10.1038/238037a0

10.1021/ar300302z

10.1038/ncomms4825

10.1002/anie.201305350

10.1002/anie.201404697

10.1039/c3ee41854e

10.1039/C4EE02403F

10.1016/j.nanoen.2015.04.012

10.1002/aenm.201600263

10.1039/C5TA09536K

10.1039/C5EE01615K

10.1039/C4EE00450G

10.1002/adfm.201603021

10.1126/science.1246913

10.1039/C4NR06128D

10.1016/j.nanoen.2017.04.002

10.1039/c2cy00411a

10.1016/j.materresbull.2013.05.019

10.1016/j.jallcom.2013.11.106

10.1016/j.apsusc.2014.02.150

10.1088/0034-4885/76/4/046401

10.1021/ja076503n

10.1016/j.apcatb.2016.06.050

10.1021/nl070648a

10.1016/j.jcis.2007.03.039

10.1002/adma.201305351

10.1002/ange.201509115

10.1021/ja501866r

10.1039/C2CS35305A

10.1039/c3nr00476g

Nowotny M. K., 2008, Chem. Informationsdienst, 39, 5275

10.1038/srep01510

10.1021/ja3012676

10.1021/am300835p

10.1002/adma.201305851

10.1039/c3cc49485c

10.1021/ja808433d

10.1016/j.cap.2014.01.007

10.1038/srep39695

10.1021/jp912201h

10.1002/adma.201302014

10.1002/anie.201107681

10.1021/jp030675z

10.1103/PhysRevLett.87.266104

10.1016/j.jssc.2012.01.004

10.1016/0368-2048(74)80012-5

10.1016/j.cej.2012.07.012

10.1021/jp3065882

10.1016/j.materresbull.2015.03.064

10.1039/C0EE00570C

10.1021/ja207348x

10.1021/jp3007552

10.1038/srep07882

10.1039/c1ee02168k

Wang B., 2017, J. Mater. Chem. A, 5

10.1016/j.apcatb.2017.05.044

10.1021/acscentsci.5b00402

10.1016/j.materresbull.2017.01.011

10.1021/jp055467g

10.1021/ja302246b

10.1063/1.3622130

10.1039/c2dt30340j

10.1021/acssuschemeng.5b01701

10.1039/C5CP06292F

10.1016/j.apcatb.2013.01.040

10.1021/ja302246b

10.1039/c3cp53991a

Dai Z., 2016, ACS Catal., 6, 892

Ding J., 2016, Appl. Catal. B, 205

10.1002/cssc.201600489

Ding J., 2017, J. Mater. Chem. A

10.1016/j.apcatb.2018.02.035

10.1039/C5CY00343A

10.1021/am507089x

10.1016/j.apcatb.2017.12.074