Defect engineering of oxygen vacancies in SnOx electron transporting layer for perovskite solar cells

Materials Today Energy - Tập 12 - Trang 389-397 - 2019
Ershuai Jiang1,2, Jin Yan1,2, Yuqian Ai1,3, Nan Li1,2, Baojie Yan1, Yuheng Zeng1, Jiang Sheng1, Jichun Ye1
1Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
2University of Chinese Academy of Sciences, Beijing, 100049, China
3School of the Testing and Photoelectric Engineering, Nanchang Hangkong University, Nanchang 330063, China

Tài liệu tham khảo

Aqel, 2015, Organolead iodide perovskite solar cells (OPSC), AASCIT J. Energy, 2 Samuel, 2013, Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber, Science, 342, 4 Jeon, 2015, Compositional engineering of perovskite materials for high-performance solar cells, Nature, 517, 476, 10.1038/nature14133 Park, 2016, Methodologies for high efficiency perovskite solar cells, Nano Converg., 3, 15, 10.1186/s40580-016-0074-x Ramirez, 2018, Layered mixed tin–lead hybrid perovskite solar cells with high stability, ACS Energy Lett., 3, 2246, 10.1021/acsenergylett.8b01411 Lindblad, 2014, Electronic structure of TiO2/CH3NH3PbI3 perovskite solar cell interfaces, J. Phys. Chem. Lett., 5, 648, 10.1021/jz402749f Leijtens, 2014, The importance of perovskite pore filling in organometal mixed halide sensitized TiO2-based solar cells, J. Phys. Chem. Lett., 5, 1096, 10.1021/jz500209g Yang, 2015, Origin of the thermal instability in CH3NH3PbI3 thin films deposited on ZnO, Chem. Mater., 27, 4229, 10.1021/acs.chemmater.5b01598 Das, 2014, SnO2: A comprehensive review on structures and gas sensors, Prog. Mater. Sci., 66, 112, 10.1016/j.pmatsci.2014.06.003 Kenji Nomura, 2004, Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors, Nature, 432, 5 Gubbala, 2008, Band-edge engineered hybrid structures for dye-sensitized solar cells based on SnO2 nanowires, Adv. Funct. Mater., 18, 2411, 10.1002/adfm.200800099 Dong, 2015, Insight into perovskite solar cells based on SnO2 compact electron-selective layer, J. Phys. Chem. C, 119, 10212, 10.1021/acs.jpcc.5b00541 Ke, 2015, F-Low-temperature solution-processed tin oxide as an alternative electron transporting layer for efficient perovskite solar cells, J. Am. Chem. Soc., 137, 6730, 10.1021/jacs.5b01994 Rao, 2015, Improving the extraction of photogenerated electrons with SnO2 nanocolloids for efficient planar perovskite solar cells, Adv. Funct. Mater., 25, 7200, 10.1002/adfm.201501264 Zhu, 2016, E-enhanced efficiency and stability of inverted perovskite solar cells using highly crystalline SnO2 nanocrystals as the robust electron-transporting layer, Adv. Mater., 28, 6478, 10.1002/adma.201600619 Jiang, 2016, Enhanced electron extraction using SnO2 for high-efficiency planar-structure HC(NH2)2PbI3-based perovskite solar cells, Nature Energy, 2, 16177, 10.1038/nenergy.2016.177 Wang, 2017, Understanding and eliminating hysteresis for highly efficient planar perovskite solar cells, Adv. Energy Mater., 7, 1700414, 10.1002/aenm.201700414 Yang, 2018, High efficiency planar-type perovskite solar cells with negligible hysteresis using EDTA-complexed SnO2, Nat. Commun., 9, 3239, 10.1038/s41467-018-05760-x Kern, 2002, Modeling and interpretation of electrical impedance spectra of dye solar cells operated under open-circuit conditions, Electrochim. Acta, 47, 4213, 10.1016/S0013-4686(02)00444-9 Villanueva-Cab, 2014, Trap-free transport in ordered and disordered TiO2 nanostructures, Nano Lett., 14, 2305, 10.1021/nl4046087 Kelen, 1979, An ESCA study of tin compounds, Inorg. Chim. Acta, 34 Paparazzo, 1995, Scanning Auger microscopy and x-ray photoelectron spectroscopy studies of Roman bronzes, J. Vac. Sci. Technol., A, 13, 1229, 10.1116/1.579866 Vincent, 1972, The nature of semiconductivity in polycrystalline tin oxide, J. Electrochem. Soc., 119 Watson, 2009, Energetic and electronic structure analysis of intrinsic defects in SnO2, J. Phys. Chem., 113 Ilka, 2018, Influence of surface defects and size on photochemical properties of SnO(2) nanoparticles, Mater. (Basel), 11 Saji, 2016, P-type SnO thin films and SnO/ZnO heterostructures for all-oxide electronic and optoelectronic device applications, Thin Solid Films, 605, 193, 10.1016/j.tsf.2015.09.026 Fu, 2001, Tin oxide thin films grown on the (-1012) sapphire substrate, J. Electroceram., 7 Yang, 2016, Surface optimization to eliminate hysteresis for record efficiency planar perovskite solar cells, Energy Environ. Sci., 9, 3071, 10.1039/C6EE02139E Watson, 2009, Electrical conductivity and lattice defects in nanocrystalline cerium oxide thin films, J. Phys. Chem. C, 1, 10 Batzill, 2005, The surface and materials science of tin oxide, Prog. Surf. Sci., 79, 47, 10.1016/j.progsurf.2005.09.002 Kilic, 2002, Origins of coexistence of conductivity and transparency in SnO(2), Phys. Rev. Lett., 88, 10.1103/PhysRevLett.88.095501 Robertson, 1984, Defect levels of SnO2, Phys. Rev. B, 30, 3520, 10.1103/PhysRevB.30.3520 Zhang, 2017, SnO2 epitaxial films with varying thickness on c-sapphire: structure evolution and optical band gap modulation, App. Surf. Sci., 423, 611, 10.1016/j.apsusc.2017.06.250 Dimova-Malinovska, 2008, Correlation between the stress in ZnO thin films and the Urbach band tail width, Phys. Status Solidi (c), 5, 3353, 10.1002/pssc.200778886 Reyna, 2016, Performance and stability of mixed FAPbI3(0.85) MAPbBr3(0.15) halide perovskite solar cells under outdoor conditions and the effect of low light irradiation, Nano Energy, 30, 570, 10.1016/j.nanoen.2016.10.053 Shao, 2014, Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells, Nat. Commun., 5, 5784, 10.1038/ncomms6784 Wetzelaer, 2015, Trap-assisted non-radiative recombination in organic-inorganic perovskite solar cells, Adv. Mater., 27, 1837, 10.1002/adma.201405372 Huang, 2017, Low-temperature processed SnO2 compact layer by incorporating TiO2 layer toward efficient planar heterojunction perovskite solar cells, Sol. Energy Mater. Sol. Cells, 164, 87, 10.1016/j.solmat.2017.02.010