Defect chemistry and electrical properties of BiFeO3

Journal of Materials Chemistry C - Tập 5 Số 38 - Trang 10077-10086
Matthias Schrade1,2,3,4,5, Nahum Masó6,7,8,4,5, Antonio Perejòn9,10,11,12,13, Luis A. Pérez‐Maqueda11,12,13, Anthony R. West7,14,15
10371 Oslo
2Centre for Materials Science and Nanotechnology
3Department of Physics
4Norway
5University of Oslo
60349 Oslo
7Department of Materials Science and Engineering, The University of Sheffield, Mappin Street, Sheffield, UK
8FERMiO/SMN
9Departamento de Química Inorgánica
10Facultad de Química
11Instituto de Ciencia de Materiales de Sevilla (CSIC-Universidad de Sevilla)
12Sevilla 41092
13Spain
14Sheffield
15UK

Tóm tắt

Electrical transport measurements provide insight into the defect structure of multiferroic BiFeO3.

Từ khóa


Tài liệu tham khảo

Catalan, 2009, Adv. Mater., 21, 2463, 10.1002/adma.200802849

Rojac, 2014, J. Am. Ceram. Soc., 97, 1993, 10.1111/jace.12982

Ederer, 2005, Phys. Rev. B: Condens. Matter Mater. Phys., 71, 224103, 10.1103/PhysRevB.71.224103

Clark, 2007, Appl. Phys. Lett., 90, 132903, 10.1063/1.2716868

Paudel, 2012, Phys. Rev. B: Condens. Matter Mater. Phys., 85, 104409, 10.1103/PhysRevB.85.104409

Xu, 2014, Dalton Trans., 43, 10787, 10.1039/C4DT00468J

Shimada, 2016, Phys. Rev. B: Condens. Matter Mater. Phys., 93, 174107, 10.1103/PhysRevB.93.174107

Brinkman, 2010, Solid State Ionics, 181, 53, 10.1016/j.ssi.2009.11.016

Wefring, 2015, Phys. Chem. Chem. Phys., 17, 9420, 10.1039/C5CP00266D

Wu, 2011, ACS Appl. Mater. Interfaces, 3, 2504, 10.1021/am2003747

Zhu, 2016, Scr. Mater., 115, 62, 10.1016/j.scriptamat.2015.12.029

Yang, 2008, Appl. Phys. Lett., 93, 142904, 10.1063/1.3000013

Seidel, 2010, Phys. Rev. Lett., 105, 197603, 10.1103/PhysRevLett.105.197603

Rojac, 2017, Nat. Mater., 16, 322, 10.1038/nmat4799

Masó, 2012, Chem. Mater., 24, 2127, 10.1021/cm300683e

Norby, 1988, Solid State Ionics, 28, 1586, 10.1016/0167-2738(88)90424-9

Schrade, 2014, Rev. Sci. Instrum., 85, 103906, 10.1063/1.4897489

Kröger, 1956, Solid State Phys., 3, 307, 10.1016/S0081-1947(08)60135-6

Mizusaki, 1982, J. Am. Ceram. Soc., 65, 363, 10.1111/j.1151-2916.1982.tb10485.x

Jonker, 1968, Philips Res. Rep., 23, 131

Zhu, 2011, J. Am. Ceram. Soc., 94, 187, 10.1111/j.1551-2916.2010.04047.x

Yang, 2012, Phys. Chem. Chem. Phys., 14, 15953, 10.1039/c2cp43082g

Schiemer, 2013, Chem. Mater., 25, 4436, 10.1021/cm402962q

Perejón, 2013, J. Am. Ceram. Soc., 96, 1220, 10.1111/jace.12186

Bogle, 2012, Adv. Funct. Mater., 22, 5224, 10.1002/adfm.201201066

Farokhipoor, 2011, Phys. Rev. Lett., 107, 127601, 10.1103/PhysRevLett.107.127601

Seidel, 2014, Adv. Mater., 26, 4376, 10.1002/adma.201400557

Higuchi, 2008, Phys. Rev. B: Condens. Matter Mater. Phys., 78, 085106, 10.1103/PhysRevB.78.085106

Tong, 2015, Sci. Rep., 5, 17993, 10.1038/srep17993

Palai, 2008, Phys. Rev. B: Condens. Matter Mater. Phys., 77, 014110, 10.1103/PhysRevB.77.014110

Kanai, 2003, J. Phys. Chem. Solids, 64, 391, 10.1016/S0022-3697(02)00284-6

Ke, 2010, Phys. Rev. B: Condens. Matter Mater. Phys., 82, 024102, 10.1103/PhysRevB.82.024102

Lim, 2016, Phys. Rev. B: Condens. Matter Mater. Phys., 94, 035123, 10.1103/PhysRevB.94.035123

Hunpratub, 2009, Appl. Phys. Lett., 94, 062904, 10.1063/1.3078825

Ravindran, 2006, Phys. Rev. B: Condens. Matter Mater. Phys., 74, 224412, 10.1103/PhysRevB.74.224412

Daumont, 2010, Phys. Rev. B: Condens. Matter Mater. Phys., 81, 144115, 10.1103/PhysRevB.81.144115

Stolichnov, 2014, Appl. Phys. Lett., 104, 132902, 10.1063/1.4869851

McGilly, 2016, Nano Lett., 16, 68, 10.1021/acs.nanolett.5b02798

McGilly, 2015, Nat. Nanotechnol., 10, 145, 10.1038/nnano.2014.320

Sluka, 2013, Nat. Commun., 4, 1808, 10.1038/ncomms2839

Campbell, 2016, Nat. Commun., 7, 13764, 10.1038/ncomms13764