Deeply sequenced metagenome and metatranscriptome of a biogas-producing microbial community from an agricultural production-scale biogas plant

Oxford University Press (OUP) - Tập 4 - Trang 1-6 - 2015
Andreas Bremges1,2, Irena Maus1, Peter Belmann1,2, Felix Eikmeyer1, Anika Winkler1, Andreas Albersmeier1, Alfred Pühler1, Andreas Schlüter1, Alexander Sczyrba1,2
1Center for Biotechnology, Bielefeld University, Bielefeld, Germany
2Faculty of Technology, Bielefeld University, Bielefeld, Germany

Tóm tắt

The production of biogas takes place under anaerobic conditions and involves microbial decomposition of organic matter. Most of the participating microbes are still unknown and non-cultivable. Accordingly, shotgun metagenome sequencing currently is the method of choice to obtain insights into community composition and the genetic repertoire. Here, we report on the deeply sequenced metagenome and metatranscriptome of a complex biogas-producing microbial community from an agricultural production-scale biogas plant. We assembled the metagenome and, as an example application, show that we reconstructed most genes involved in the methane metabolism, a key pathway involving methanogenesis performed by methanogenic Archaea. This result indicates that there is sufficient sequencing coverage for most downstream analyses. Sequenced at least one order of magnitude deeper than previous studies, our metagenome data will enable new insights into community composition and the genetic potential of important community members. Moreover, mapping of transcripts to reconstructed genome sequences will enable the identification of active metabolic pathways in target organisms.

Tài liệu tham khảo

Weiland P. Biogas production: current state and perspectives. Appl Microbiol Biotechnol. 2010; 85(4):849–60. doi:10.1007/s00253-009-2246-7. Bremges A, Maus I, Belmann P, Eikmeyer F, Winkler A, Albersmeier A, et al. Supporting data and materials for “Deeply sequenced metagenome and metatranscriptome of a biogas-producing microbial community from an agricultural production-scale biogas plant”. GigaScience Database. 2015. http://dx.doi.org/10.5524/100151 Jaenicke S, Ander C, Bekel T, Bisdorf R, Dröge M, Gartemann KH, et al. Comparative and joint analysis of two metagenomic datasets from a biogas fermenter obtained by 454-pyrosequencing. PLoS ONE. 2011; 6(1):14519. doi:10.1371/journal.pone.0014519 Wirth R, Kovács E, Maróti G, Bagi Z, Rákhely G, Kovács KL. Characterization of a biogas-producing microbial community by short-read next generation DNA sequencing. Biotechnol Biofuels. 2012; 5:41. doi:10.1186/1754-6834-5-41 Zakrzewski M, Goesmann A, Jaenicke S, Jünemann S, Eikmeyer F, Szczepanowski R, et al. Profiling of the metabolically active community from a production-scale biogas plant by means of high-throughput metatranscriptome sequencing. J Biotechnol. 2012; 158(4):248–58. doi:10.1016/j.jbiotec.2012.01.020. Stolze Y, Zakrzewski M, Maus I, Eikmeyer F, Jaenicke S, Rottmann N, et al. Comparative metagenomics of biogas-producing microbial communities from production-scale biogas plants operating under wet or dry fermentation conditions. Biotechnol Biofuels. 2015; 8:14. doi:10.1186/s13068-014-0193-8. Schlüter A, Bekel T, Diaz NN, Dondrup M, Eichenlaub R, Gartemann KH, et al. The metagenome of a biogas-producing microbial community of a production-scale biogas plant fermenter analysed by the 454-pyrosequencing technology. J Biotechnol. 2008; 136(1-2):77–90. doi:10.1016/j.jbiotec.2008.05.008. Gubler U, Hoffman BJ. A simple and very efficient method for generating cdna libraries. Gene. 1983; 25(2-3):263–9. doi:10.1016/0378-1119(83)90230-5. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014; 30(15):2114–120.doi:10.1093/bioinformatics/btu170. Boisvert S, Raymond F, Godzaridis E, Laviolette F, Corbeil J. Ray Meta: scalable de novo metagenome assembly and profiling. Genome Biol. 2012; 13(12):122. doi:10.1186/gb-2012-13-12-r122. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012; 9(4):357–9. doi:10.1038/nmeth.1923. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009; 25(16):2078–079. doi:10.1093/bioinformatics/btp352. Hyatt D, LoCascio PF, Hauser LJ, Uberbacher EC. Gene and translation initiation site prediction in metagenomic sequences. Bioinformatics. 2012; 28(17):2223–230. doi:10.1093/bioinformatics/bts429. Kanehisa M, Goto S, Sato Y, Kawashima M, Furumichi M, Tanabe M. Data, information, knowledge and principle: back to metabolism in KEGG. Nucleic Acids Res. 2014; 42(Database issue):199–205. doi:10.1093/nar/gkt1076. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al. BLAST+: architecture and applications. BMC Bioinformatics. 2009; 10:421. doi:10.1186/1471-2105-10-421. Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010; 26(6):841–2. doi:10.1093/bioinformatics/btq033. Kohrs F, Wolter S, Benndorf D, Heyer R, Hoffmann M, Rapp E, et al. Fractionation of biogas plant sludge material improves metaproteomic characterization to investigate metabolic activity of microbial communities. Proteomics. 2015. doi:10.1002/pmic.201400557. Bremges A, Belmann P, Sczyrba A. GitHub Repository. https://github.com/metagenomics/2015-biogas-cebitec. DockerHub Registry. https://registry.hub.docker.com/u/metagenomics/2015-biogas-cebitec.