DeepMaker: A multi-objective optimization framework for deep neural networks in embedded systems
Tóm tắt
Từ khóa
Tài liệu tham khảo
Krizhevsky, 2012, Imagenet classification with deep convolutional neural networks, Adv. Neural Inf. Process. Syst., 1097
Hinton, 2012, Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups, IEEE Signal Process. Mag., 29, 82, 10.1109/MSP.2012.2205597
Mnih, 2015, Human-level control through deep reinforcement learning, Nature, 518, 529, 10.1038/nature14236
Zhang, 2016, Colorful image colorization, 649
T., 2015, Learning both weights and connections for efficient neural networks, Adv. Neural Inf. Process. Syst., 50, 1135
Huang, 2017, Densely connected convolutional networks, 1, 3
Yazdanbakhsh, 2017, AxBench: a multiplatform benchmark suite for approximate computing, IEEE Des. Test., 34, 60, 10.1109/MDAT.2016.2630270
Deb, 2002, A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE Trans. Evol. Comput., 6, 182, 10.1109/4235.996017
Zhang, 2016, Caffeine: towards uniformed representation and acceleration for deep convolutional neural networks, 18
F. Chollet, Keras, github, 2015. [Online]. Available:https://github.com/fchollet/keras.
Esmaeilzadeh, 2013, Power challenges may end the multicore era, Commun. ACM, 56, 93, 10.1145/2408776.2408797
Sharma, 2015, DNNWEAVER: from high-level deep network models to FPGA acceleration, IEEE Int. Conf. Mechatron. Electron. Autom. Eng., 76
LeCun, 1998, Gradient based learning applied to document recognition, Proc. IEEE, 86, 2278, 10.1109/5.726791
A. Krizhevsky and G. Hinton. Cifar-10 dataset. https://www.cs.toronto.edu/kriz/cifar.html.
Bergstra, 2011, Algorithms for hyperparameter optimization, 2546
Bengio, 2000, Gradient-based optimization of hyperparameters, Neural Comput., 8, 1889, 10.1162/089976600300015187
Bergstra, 2012, Random search for hyper-parameter optimization, J. Mach. Learn. Res., 281
Snoek, 2012, Practical bayesian optimization of machine learning algorithms, Adv. Neural Inf. Process. Syst., 2960
Y. Sun, B. Xue, and M. Zhang, Evolving deep convolutional neural networks for image classification (2017). arXiv:1710.10741.
B. Baker, O. Gupta, N. Naik, and R. Raskar, Designing neural network architectures using reinforcement learning (2016) arXiv Prepr 116.
B. Zoph, and Q.V. Le, Neural architecture search with reinforcement learning (2016) arXiv prepr. arXiv:1611.01578.
Z. Zhong, J. Yan, and C.L. Liu, Practical network blocks design with Q-Learning (2017) arXiv prepr. arXiv:1708.05552.
Suganuma, 2017, A genetic programming approach to designing convolutional neural network architectures, Genet. Evol. Comput. Conf., 497, 10.1145/3071178.3071229
E. Real, S. Moore, A. Selle, S. Saxena, Y.L. Suematsu, Q. Le, and A. Kurakin, Large-scale evolution of image classifiers (2017). arXiv:1703.01041.
X. Gastaldi, Shake-shake regularization (2017). arXiv:1705.07485.
He, 2016, Deep residual learning for image recognition, 770
E. Dufourq, and B.A. Bassett, EDEN: evolutionary deep networks for efficient machine learning (2017). arXiv:1709.09161.
S.H. Hasanpour, M. Rouhani, M. Fayyaz, and M. Sabokrou, Lets keep it simple, using simple architectures to outperform deeper and more complex architectures (2016). arXiv:1608.06037.
L. Wan, M. Zeiler, S. Zhang, Y. LeCun, and R. Fergus, Regularization of neural networks using dropconnect, 1 (2013) 109–111.
Simonyan, 2015, Very deep convolutional networks for large-scale image recognition, Int. Conf. Learn. Represent., 114
Grigorian, 2014, Accelerating divergent applications on simd architectures using neural networks, 317
Du, 2015, Leveraging the error resilience of neural networks for designing highly energy efficient accelerators, IEEE Trans. Comput. Des. Integr. Circt. Syst., 34, 1223, 10.1109/TCAD.2015.2419628
Moreau, 2015, SNNAP: approximate computing on programmable SOCS via neural acceleration, 603
Yazdanbakhsh, 2015, Neural acceleration for GPU throughput processors, 482
H. Li, A. K., I. Durdanovic, H. Samet, and H.P. Graf, Pruning filters for efficient convnets (2016). arXiv:1608.08710.
Han, 2015, Learning both weights and connections for efficient neural network, 1135
H. Hu, R. Peng, Y.W. Tai and C.K. Tang, Network trimming: a data-driven neuron pruning approach towards efficient deep architectures (2016) arXiv preprint arXiv:1607.03250.
Li, 2018, Filter level pruning based on similar feature extraction for convolutional neural networks, IEICE Trans. Inf. Syst., 101, 203
S. Srinivas and R.V. Babu, Data-free parameter pruning for deep neural networks (2015). arXiv:1507.06149.
Zitzler, 1998, Multiobjective optimization using evolutionary algorithms—a comparative case study, 292
Esmaeilzadeh, 2012, Dark silicon and the end of multicore scaling, IEEE Micro, 32, 10.1109/MM.2012.17
Abadi, 2016, Tensorflow: a system for large-scale machine learning, 265
Loni, 2018, ADONN: adaptive design of optimized deep neural networks for embedded systems, 397
Lu, 2019, NSGA-Net: neural architecture search using multi-objective genetic algorithm, 419
Mahdiani, 2020, ΔNN: power-efficient neural network acceleration using differential weights, IEEE Micro