Deep transfer learning-based automated detection of COVID-19 from lung CT scan slices

Sakshi Ahuja1, Bijaya Ketan Panigrahi1, Nilanjan Dey2, V. Rajinikanth3, Tapan Kumar Gandhi1
1Electrical Engineering Department, IITD, New Delhi, 110016, India
2Department of Information Technology, Techno International New Town, Kolkata, 700156, West Bengal, India
3Department of Electronics and Instrumentation Engineering, St. Joseph’s College of Engineering, Chennai, 600119, Tamilnadu, India

Tóm tắt

Từ khóa


Tài liệu tham khảo

Goldman L, Schafer A I (2016) Approach to the patient with respiratory disease. In: Goldman-Cecil Medicine. 25th edn. Elsevier

Reid P T, Innes J A (2019) Respiratory medicine. In: Ralston S H, Penman I D, Strachan M W J, Hobson R (eds) Davidson’s Principles and Practice of Medicine. 23rd edn. Elsevier

WebMD (2020) https://www.webmd.com/lung/lung-diseases-overview#1. Last accessed date 6th May 2020

Association A L (2020) https://www.lung.org/lung-health-diseases/lung-disease-lookup. Last accessed date 6th May 2020

WHO (2020) https://www.who.int/emergencies/diseases/novel-coronavirus-2019/technical-guidance/naming-the-coronavirus-disease-(covid-2019)-and-the-virus-that-causes-it. Last accessed date 6th May 2020

Worldometer (2020) https://www.worldometers.info/coronavirus. Last accessed date 13th May 2020

Radiopedia (2020) https://radiopaedia.org/articles/covid-19-3. Last accessed date 7th May 2020

Srivatsan S, Han P D, Raay K V, Wolf C R, McCulloch D J, et al. (2020) Preliminary support for a “dry swab, extraction free” protocol for sars-cov-2 testing via rt-qpcr. bioRxiv. https://doi.org/10.1101/2020.04.22.056283

Bell J (2020) https://www.nsmedicaldevices.com/news/covid-19-testing-kits-shortages/. Last accessed date 7th May 2020

Chung M, Bernheim A, Mei X, Zhang N, Huang M, et al (2020) Ct imaging features of 2019 novel coronavirus (2019-ncov). Radiology 295(1):202–207

Bernheim A, Mei X, Huang M, Yang Y, Fayad Z A, et al. (2020) Chest ct findings in coronavirus disease-19 (covid-19): relationship to duration of infection. Radiology 295:685–691. https://doi.org/10.1148/radiol.2020200463

Santosh K C (2020) Ai-driven tools for coronavirus outbreak: need of active learning and cross-population train/test models on multitudinal/ multimodal data. J Med Syst 44:1–5

Das D, Santosh K C, Pal U (2020) Truncated inception net: Covid-19 outbreak screening using chest x-rays. Research Square pp 1–11

Cohen J P (2020) Covid-19 image data collection. https://github.com/ieee8023/covid-chestxray-dataset

Mooney P (2020) chest x-ray images (pneumonia) dataset. https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia

Antani S (2014) Tuberculosis chest x-ray image data sets. https://ceb.nlm.nih.gov/tuberculosis-chest-x-ray-image-data-sets/

Ozturk T, Talo M, Yildirim E A, Baloglu U B, Yildirim O, Acharya] U R (2020) Automated detection of covid-19 cases using deep neural networks with x-ray images. Comput Biol Med 121:103792. https://doi.org/10.1016/j.compbiomed.2020.103792

Khalifa N E M, Taha M H N, Hassanien A E, Elghamrawy S (April 2020) Detection of Coronavirus (COVID-19) Associated Pneumonia based on Generative Adversarial Networks and a Fine-Tuned Deep Transfer Learning Model using Chest X-ray Dataset. arXiv:2004.01184

Oakden-Rayner L (2018) Chexnet: an in-depth review. https://lukeoakdenrayner.wordpress.com/2018/01/24/chexnet-an-in-depth-review/

Irvin J, Rajpurkar P, Ko M, Yu Y, et al S C-I (2019) Chexpert: A large chest radiograph dataset with uncertainty labels and expert comparison

Hall L O, Paul R, Goldgof D B, Goldgof G M (2020) Finding covid-19 from chest x-rays using deep learning on a small dataset

Radiopedia (2020) https://radiopaedia.org/search?utf8=%E2%9C%93&q=covid&scope=all&lang=us. Last accessed date 7th May 2020

of Medical I S, Radiology I (2020) https://www.sirm.org/en/category/articles/covid-19-database/. Last accessed date 7th May 2020

NIH (2020) https://www.kaggle.com/nih-chest-xrays/data. Last accessed date 7th May 2020

Minaee S, Kafieh R, Sonka M, Yazdani S, Soufi G J (2020) Deep-covid: Predicting covid-19 from chest x-ray images using deep transfer learning

Cohen J P, Morrison P, Dao L (2020) Covid-19 image data collection

Irvin J, Rajpurkar P, Ko M, Yu Y, Ciurea-Ilcus S et al (2019) Chexpert: A large chest radiograph dataset with uncertainty labels and expert comparison

Apostolopoulos I D, Mpesiana T A (2020) Covid-19: automatic detection from x-ray images utilizing transfer learning with convolutional neural networks. Physical and Engineering Sciences in Medicine 43 (0):635–640. https://doi.org/10.1007/s13246-020-00865-4

Larxel (2020). https://www.kaggle.com/andrewmvd/convid19-X-rays. Last accessed date 7th May 2020.

Zhang J, Xie Y, Li Y, Shen C, Xia Y (2020) Covid-19 screening on chest x-ray images using deep learning based anomaly detection 2003.12338

Wang X, Peng Y, Lu L, Lu Z, Bagheri M, Summers R (2017) Chestx-ray8: Hospital-scale chest x-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases

Narin A, Kaya C, Pamuk Z (2020) Automatic detection of coronavirus disease (covid-19) using x-ray images and deep convolutional neural networks

Rajinikanth V, Dey N, Raj A N J, Hassanien A E, Santosh K C et al (2020) Harmony-search and otsu based system for coronavirus disease (covid-19) detection using lung ct scan images 2004.03431

Radiopedia (2020). https://radiopaedia.org/articles/COVID-19-3?lang=us Last accessed date 5th April 2020.

Zhao J, Zhang Y, He X, Xie P (2020) Covid-ct-dataset: A ct scan dataset about covid-19

Rajpurkar P, Irvin J, Zhu K, Yang B, Mehta H et al (2017) Chexnet: Radiologist-level pneumonia detection on chest x-rays with deep learning 1711.05225

Loey M, Smarandache F, Khalifa N E M (2020) A deep transfer learning model with classical data augmentation and cgan to detect covid-19 from chest ct radiography digital images. Preprints

Zhao J, Zhang Y, He X, Xie P (2020) https://github.com/UCSD-AI4H/COVID-CT. Last accessed date 2nd May 2020

Medrxiv (2020) https://www.medrxiv.org/. Last accessed date 2nd May 2020

Biorxiv (2020) https://www.biorxiv.org/. Last accessed date 2nd May 2020

Gozes O, Frid-Adar M, Greenspan H, Browning P D, Zhang H et al (2020) Rapid ai development cycle for the coronavirus (covid-19) pandemic: Initial results for automated detectio & patient monitoring using deep learning ct image analysis 2003.05037

Singh D, Kumar V, Vaishali, Kaur M (2020) Classification of covid-19 patients from chest ct images using multi-objective differential evolution–based convolutional neural networks. European Journal of Clinical Microbiology & Infectious Diseases 39(7):1379–1389

Wu Y-H, Gao S-H, Mei J, Xu J, Fan D-P, Zhao C-W, Cheng M-M (2020) Jcs: An explainable covid-19 diagnosis system by joint classification and segmentation

Xu X, Jiang X, Ma C, Du P, Li X, Lv S, Yu L, Chen Y, Su J, Lang G, Li Y, Zhao H, Xu K, Ruan L, Wu W (2020) Deep learning system to screen coronavirus disease 2019 pneumonia

Tang Z, Zhao W, Xie X, Zhong Z, Shi F, Liu J, Shen D (2020) Severity assessment of coronavirus disease 2019 (covid-19) using quantitative features from chest ct images

Ai T, Yang Z, Hou H, Zhan C, Chen C et al (2020) Correlation of chest ct and rt-pcr testing in coronavirus disease 2019 (covid-19) in china: A report of 1014 cases. Radiology 296(2):200642. PMID: 32101510

SCI (2020) http://www.sci-news.com/medicine/chest-ct-covid-19-08192.html. Last accessed date 8th May 2020

Sturts A (2020) https://www.mdmag.com/medical-news/ct-not-appropriate-for-covid19-diagnosis. Last accessed date 8th May 2020

Daley B D B (2020) https://4rai.com/blog/ct-scan-provides-best-diagnosis-for-covid-19. Last accessed date 8th May 2020

Ye Z, Zhang Y, Wang Y, Huang Z, Song B (2020) Chest ct manifestations of new coronavirus disease 2019(covid-19): a pictorial review. Eur Radiol 30:4381–4389

Fong SJ, Li G, Dey N, Crespo RG, Herrera-Viedma E (2020) Composite monte carlo decision making under high uncertainty of novel coronavirus epidemic using hybridized deep learning and fuzzy rule induction

Fong S J, Li G, Dey N, Gonzalez-Crespo R, Herrera-Viedma E (2020) Finding an accurate early forecasting model from small dataset: A case of 2019-ncov novel coronavirus outbreak. International Journal of Interactive Multimedia and Artificial Intelligence 6(1):132. https://doi.org/10.9781/ijimai.2020.02.002

G. P. Nason BW S (1995) The stationary wavelet transform and some statistical applications. Springer, vol 103

Pesquet J , Krim H, Carfantan H (1996) Time-invariant orthonormal wavelet representations. IEEE Transactions on Signal Processing 44(8):1964–1970

Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition

Krizhevsky A, Sutskever I, Hinton G (2012) Imagenet classification with deep convolutional neural networks. Neural Information Processing Systems vol 60 (6)

Iandola FN, Han S, Moskewicz MW, Ashraf K, Dally WJ, Keutzer K (2016) Squeezenet: Alexnet-level accuracy with 50x fewer parameters and <0.5mb model size

Li D, Cong A, Guo S (2019) Sewer damage detection from imbalanced cctv inspection data using deep convolutional neural networks with hierarchical classification. Autom Constr 101:199–208. https://doi.org/10.1016/j.autcon.2019.01.017http://www.sciencedirect.com/science/article/pii/S0926580518306174

He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: 016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp 770–778

He X, Yang X, Zhang S, Zhao J, Zhang Y, Xing E, Xie P (2020) Sample-efficient deep learning for covid-19 diagnosis based on ct scans. medRxiv