Deep transfer learning-based automated detection of COVID-19 from lung CT scan slices
Tóm tắt
Từ khóa
Tài liệu tham khảo
Goldman L, Schafer A I (2016) Approach to the patient with respiratory disease. In: Goldman-Cecil Medicine. 25th edn. Elsevier
Reid P T, Innes J A (2019) Respiratory medicine. In: Ralston S H, Penman I D, Strachan M W J, Hobson R (eds) Davidson’s Principles and Practice of Medicine. 23rd edn. Elsevier
WebMD (2020) https://www.webmd.com/lung/lung-diseases-overview#1. Last accessed date 6th May 2020
Association A L (2020) https://www.lung.org/lung-health-diseases/lung-disease-lookup. Last accessed date 6th May 2020
WHO (2020) https://www.who.int/emergencies/diseases/novel-coronavirus-2019/technical-guidance/naming-the-coronavirus-disease-(covid-2019)-and-the-virus-that-causes-it. Last accessed date 6th May 2020
Worldometer (2020) https://www.worldometers.info/coronavirus. Last accessed date 13th May 2020
Radiopedia (2020) https://radiopaedia.org/articles/covid-19-3. Last accessed date 7th May 2020
Srivatsan S, Han P D, Raay K V, Wolf C R, McCulloch D J, et al. (2020) Preliminary support for a “dry swab, extraction free” protocol for sars-cov-2 testing via rt-qpcr. bioRxiv. https://doi.org/10.1101/2020.04.22.056283
Bell J (2020) https://www.nsmedicaldevices.com/news/covid-19-testing-kits-shortages/. Last accessed date 7th May 2020
Chung M, Bernheim A, Mei X, Zhang N, Huang M, et al (2020) Ct imaging features of 2019 novel coronavirus (2019-ncov). Radiology 295(1):202–207
Bernheim A, Mei X, Huang M, Yang Y, Fayad Z A, et al. (2020) Chest ct findings in coronavirus disease-19 (covid-19): relationship to duration of infection. Radiology 295:685–691. https://doi.org/10.1148/radiol.2020200463
Santosh K C (2020) Ai-driven tools for coronavirus outbreak: need of active learning and cross-population train/test models on multitudinal/ multimodal data. J Med Syst 44:1–5
Das D, Santosh K C, Pal U (2020) Truncated inception net: Covid-19 outbreak screening using chest x-rays. Research Square pp 1–11
Cohen J P (2020) Covid-19 image data collection. https://github.com/ieee8023/covid-chestxray-dataset
Mooney P (2020) chest x-ray images (pneumonia) dataset. https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia
Antani S (2014) Tuberculosis chest x-ray image data sets. https://ceb.nlm.nih.gov/tuberculosis-chest-x-ray-image-data-sets/
Ozturk T, Talo M, Yildirim E A, Baloglu U B, Yildirim O, Acharya] U R (2020) Automated detection of covid-19 cases using deep neural networks with x-ray images. Comput Biol Med 121:103792. https://doi.org/10.1016/j.compbiomed.2020.103792
Khalifa N E M, Taha M H N, Hassanien A E, Elghamrawy S (April 2020) Detection of Coronavirus (COVID-19) Associated Pneumonia based on Generative Adversarial Networks and a Fine-Tuned Deep Transfer Learning Model using Chest X-ray Dataset. arXiv:2004.01184
Oakden-Rayner L (2018) Chexnet: an in-depth review. https://lukeoakdenrayner.wordpress.com/2018/01/24/chexnet-an-in-depth-review/
Irvin J, Rajpurkar P, Ko M, Yu Y, et al S C-I (2019) Chexpert: A large chest radiograph dataset with uncertainty labels and expert comparison
Hall L O, Paul R, Goldgof D B, Goldgof G M (2020) Finding covid-19 from chest x-rays using deep learning on a small dataset
Radiopedia (2020) https://radiopaedia.org/search?utf8=%E2%9C%93&q=covid&scope=all&lang=us. Last accessed date 7th May 2020
of Medical I S, Radiology I (2020) https://www.sirm.org/en/category/articles/covid-19-database/. Last accessed date 7th May 2020
NIH (2020) https://www.kaggle.com/nih-chest-xrays/data. Last accessed date 7th May 2020
Minaee S, Kafieh R, Sonka M, Yazdani S, Soufi G J (2020) Deep-covid: Predicting covid-19 from chest x-ray images using deep transfer learning
Cohen J P, Morrison P, Dao L (2020) Covid-19 image data collection
Irvin J, Rajpurkar P, Ko M, Yu Y, Ciurea-Ilcus S et al (2019) Chexpert: A large chest radiograph dataset with uncertainty labels and expert comparison
Apostolopoulos I D, Mpesiana T A (2020) Covid-19: automatic detection from x-ray images utilizing transfer learning with convolutional neural networks. Physical and Engineering Sciences in Medicine 43 (0):635–640. https://doi.org/10.1007/s13246-020-00865-4
Larxel (2020). https://www.kaggle.com/andrewmvd/convid19-X-rays. Last accessed date 7th May 2020.
Zhang J, Xie Y, Li Y, Shen C, Xia Y (2020) Covid-19 screening on chest x-ray images using deep learning based anomaly detection 2003.12338
Wang X, Peng Y, Lu L, Lu Z, Bagheri M, Summers R (2017) Chestx-ray8: Hospital-scale chest x-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases
Narin A, Kaya C, Pamuk Z (2020) Automatic detection of coronavirus disease (covid-19) using x-ray images and deep convolutional neural networks
Rajinikanth V, Dey N, Raj A N J, Hassanien A E, Santosh K C et al (2020) Harmony-search and otsu based system for coronavirus disease (covid-19) detection using lung ct scan images 2004.03431
Radiopedia (2020). https://radiopaedia.org/articles/COVID-19-3?lang=us Last accessed date 5th April 2020.
Zhao J, Zhang Y, He X, Xie P (2020) Covid-ct-dataset: A ct scan dataset about covid-19
Rajpurkar P, Irvin J, Zhu K, Yang B, Mehta H et al (2017) Chexnet: Radiologist-level pneumonia detection on chest x-rays with deep learning 1711.05225
Loey M, Smarandache F, Khalifa N E M (2020) A deep transfer learning model with classical data augmentation and cgan to detect covid-19 from chest ct radiography digital images. Preprints
Zhao J, Zhang Y, He X, Xie P (2020) https://github.com/UCSD-AI4H/COVID-CT. Last accessed date 2nd May 2020
Medrxiv (2020) https://www.medrxiv.org/. Last accessed date 2nd May 2020
Biorxiv (2020) https://www.biorxiv.org/. Last accessed date 2nd May 2020
Gozes O, Frid-Adar M, Greenspan H, Browning P D, Zhang H et al (2020) Rapid ai development cycle for the coronavirus (covid-19) pandemic: Initial results for automated detectio & patient monitoring using deep learning ct image analysis 2003.05037
Singh D, Kumar V, Vaishali, Kaur M (2020) Classification of covid-19 patients from chest ct images using multi-objective differential evolution–based convolutional neural networks. European Journal of Clinical Microbiology & Infectious Diseases 39(7):1379–1389
Wu Y-H, Gao S-H, Mei J, Xu J, Fan D-P, Zhao C-W, Cheng M-M (2020) Jcs: An explainable covid-19 diagnosis system by joint classification and segmentation
Xu X, Jiang X, Ma C, Du P, Li X, Lv S, Yu L, Chen Y, Su J, Lang G, Li Y, Zhao H, Xu K, Ruan L, Wu W (2020) Deep learning system to screen coronavirus disease 2019 pneumonia
Tang Z, Zhao W, Xie X, Zhong Z, Shi F, Liu J, Shen D (2020) Severity assessment of coronavirus disease 2019 (covid-19) using quantitative features from chest ct images
Ai T, Yang Z, Hou H, Zhan C, Chen C et al (2020) Correlation of chest ct and rt-pcr testing in coronavirus disease 2019 (covid-19) in china: A report of 1014 cases. Radiology 296(2):200642. PMID: 32101510
SCI (2020) http://www.sci-news.com/medicine/chest-ct-covid-19-08192.html. Last accessed date 8th May 2020
Sturts A (2020) https://www.mdmag.com/medical-news/ct-not-appropriate-for-covid19-diagnosis. Last accessed date 8th May 2020
Daley B D B (2020) https://4rai.com/blog/ct-scan-provides-best-diagnosis-for-covid-19. Last accessed date 8th May 2020
Ye Z, Zhang Y, Wang Y, Huang Z, Song B (2020) Chest ct manifestations of new coronavirus disease 2019(covid-19): a pictorial review. Eur Radiol 30:4381–4389
Fong SJ, Li G, Dey N, Crespo RG, Herrera-Viedma E (2020) Composite monte carlo decision making under high uncertainty of novel coronavirus epidemic using hybridized deep learning and fuzzy rule induction
Fong S J, Li G, Dey N, Gonzalez-Crespo R, Herrera-Viedma E (2020) Finding an accurate early forecasting model from small dataset: A case of 2019-ncov novel coronavirus outbreak. International Journal of Interactive Multimedia and Artificial Intelligence 6(1):132. https://doi.org/10.9781/ijimai.2020.02.002
G. P. Nason BW S (1995) The stationary wavelet transform and some statistical applications. Springer, vol 103
Pesquet J , Krim H, Carfantan H (1996) Time-invariant orthonormal wavelet representations. IEEE Transactions on Signal Processing 44(8):1964–1970
Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition
Krizhevsky A, Sutskever I, Hinton G (2012) Imagenet classification with deep convolutional neural networks. Neural Information Processing Systems vol 60 (6)
Iandola FN, Han S, Moskewicz MW, Ashraf K, Dally WJ, Keutzer K (2016) Squeezenet: Alexnet-level accuracy with 50x fewer parameters and <0.5mb model size
Li D, Cong A, Guo S (2019) Sewer damage detection from imbalanced cctv inspection data using deep convolutional neural networks with hierarchical classification. Autom Constr 101:199–208. https://doi.org/10.1016/j.autcon.2019.01.017http://www.sciencedirect.com/science/article/pii/S0926580518306174
He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: 016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp 770–778