Deep neural network application for 4D seismic inversion to changes in pressure and saturation: Optimizing the use of synthetic training datasets
Tóm tắt
Từ khóa
Tài liệu tham khảo
Aki K., 1980, Quantitative Seismology: Theory and Methods V1
Amini H.(2014)A pragmatic approach to simulator‐to‐seismic modelling for 4D seismic interpretation. PhD Thesis Heriot‐Watt University.
Amini H.(2018)Comparison of Xu‐White simplified Xu‐White (Keys and Xu) and Nur ’s critical porosity in shaley sands. 80th EAGE Annual meeting Copenhagen Denmark Extended Abstracts We A11 08.
Amini H.andMacBeth C.(2015)Calibration of rock stress‐sensitivity using 4D seismic data. 77th EAGE Annual meeting Madrid Spain Extended Abstracts We A11 08.
Ayzenberg M.andLiu S.(2014)Saturation and pressure inversion ‐ from 4D seismic to reservoir model updating. 76th EAGE Annual meeting Amsterdam Netherlands Extended Abstracts We G102 16.
Bergstra J. Yamins D.andCoxD.D.(2013)Making a science of model search: hyperparameter optimization in hundreds of dimensions for vision architectures.30th International Conference on Machine Learning ICML Atlanta Georgia USA 115–123.
Blanchard T.D.(2012)Inherent uncertainties in 4D AVO and the implications on pressure and saturation inversion. 74th EAGE Annual meeting Copenhagen Denmark Extended Abstracts Y020.
Blanchard T.D.andThore P.(2008)Introducing prior information to pressure and saturation inversion: the key for success?83rd SEG Annual meeting Houston Texas USA Extended Abstracts 4971–4975.
Coleou T. Roustiau A. Machecler I. Ayzenberg M. Fayemendy C. Skjei N. et al. (2013)4D Petrophysical seismic inversion ‐ case studies. 75th EAGE Annual meeting London UK Extended Abstracts We 17 03.
Côrte G. MacBeth C.andAmini H.(2019)North Sea field application of 4D Bayesian inversion to pressure and saturation changes. 81st EAGE Annual meeting London UK Extended Abstracts Tu_P04_09.
Dramsch J. Corte G. Amini H. Lüthje M.andMacBeth C.(2019a)Deep learning application for 4D pressure saturation inversion compared to Bayesian inversion on North Sea Data. Second EAGE Workshop Practical Reservoir Monitoring We PRM 11.
Dramsch J. Corte G. Amini H. MacBeth C.andLüthje M.(2019b)Including physics in deep learning ‐ an example from 4D seismic pressure saturation inversion. 81st EAGE Annual meeting London UK Extended Abstracts WS10_05.
Floricich M.(2006)An engineering‐consistent approach for pressure and saturation estimation from time‐lapse seismic data. PhD Thesis Heriot‐Watt University.
Gassmann F., 1951, Über die Elastizität poröser Medien, Vierteljahrsschrift der Naturforschenden Gesellschaft in Zürich, 96, 1
Kingma D.P.andBa J.(2015)Adam: a method for stochastic optimization.International Conference for Learning Representations San Diego California USA.
Kingma D.P.andWelling M.(2014).Auto‐encoding variational Bayes.Proceedings of International Conference for Learning Representations Banff Canada.
Kingma D.P., 2015, Variational dropout and the local reparameterization trick, Advances in Neural Information Processing Systems, 28, 2575
Omofoma V.(2017)The quantification of pressure and saturation changes in clastic reservoirs using 4D seismic data. PhD Thesis Heriot‐Watt University.
Srivastava N., 2014, Dropout: a simple way to prevent neural networks from overfitting, Journal of Machine Learning Research, 15, 1929
Wong M.Y.(2017.Pressure and saturation estimation from prm time‐lapse seismic data for a compacting reservoir. PhD Thesis Heriot‐Watt University.
Xue Y. Araujo M. Wang K. Lopez J. Kumar G.andBrew G.(2019)Machine Learning to reduce cycle time for time‐lapse seismic data assimilation into reservoir management. 81st EAGE Annual meeting London UK Extended Abstracts We_R07_08.