Deep learning schemes for parabolic nonlocal integro-differential equations

Javier Castro1
1Departamento de Ingeniería Matemática, Universidad de Chile, Casilla, 170 Correo 3, Santiago, Chile

Tóm tắt

AbstractIn this paper we consider the numerical approximation of nonlocal integro differential parabolic equations via neural networks. These equations appear in many recent applications, including finance, biology and others, and have been recently studied in great generality starting from the work of Caffarelli and Silvestre by Lius and Lius (Comm PDE 32(8):1245–1260, 2007). Based on the work by Hure, Pham and Warin by Hure et al. (Math Comp 89:1547–1579, 2020), we generalize their Euler scheme and consistency result for Backward Forward Stochastic Differential Equations to the nonlocal case. We rely on Lévy processes and a new neural network approximation of the nonlocal part to overcome the lack of a suitable good approximation of the nonlocal part of the solution.

Từ khóa


Tài liệu tham khảo

Grégoire, A.: Numerical Analysis and Optimization An introduction to mathematical modeling and numerical simulation. Oxford University Press; Illustrated edition (July 19: 472 pages. ISBN- 10, 9780805839852 (2007)

Md, Z.A., Tarek, M.T., Chris, Y., Stefan, W., Paheding, S., Mst, S.N., Mahmudul, H., Brian, C.V.E., Abdul, A.S.A., Vijayan, K.A.: A state-of-the-art survey on deep learning theory and architectures. Electronics 8(3), 292 (2019). https://doi.org/10.3390/electronics8030292

Ali, M.A., Hiam, A., Isam, A.Q., Amin, A., Wafaa, A.S.: Brain tumor classification using deep learning technique—a comparison between cropped, uncropped, and segmented lesion images with different sizes. Int. J. Adv. Trends Comput. Sci. Eng. 8(6), 2 (2019)

David, A.: Lévy processes and stohastic calculus, Cambridge Studies In Advanced Mathematics, 2nd Edition, (April 1, 2009). ISBN-10: 0521738652

Barles, G., Buckdahn, R., Pardoux, E.: Backward stochastic differential equations and integral-partial differential equations. Stochas. Stocha. Rep. 60, 57–83 (1996)

Guy, B., Olivier, L., Erwin, T.: Lipschitz regularity for integro-differential equations with coercive hamiltonians and applications to large time behavior. Nonlinearity, Volume 30, Number 2 (2017), arXiv:1602.07806 [math.AP]

Dalya, B.: Machine learning in astronomy: a practical overview, arXiv:1904.07248v1 [astro-ph.IM] 15 Apr 2019

Christian, B., Fabian, H., Martin, H., Arnulf, J., Thomas, K.: Overcoming the curse of dimensionality in the numerical approximation of Allen-Cahn partial differential equations via truncated full-history recursive multilevel Picard approximations, Accepted in J. Numer. Math. arXiv:1907.06729 [math.NA], 2019

Christian, B., Weinan, E., Arnulf, J.: Machine learning approximation algorithms for high-dimensional fully nonlinear partial differential equations and second-order backward stochastic differential equations, J. Nonlinear Sci. 29 (2019), 1563–1619, arXiv:1709.05963v1 [math.NA], 2017

Benson, D.A., Wheatcraft, S.W., Meerschaert, M.M.: Application of a fractional advection-dispersion equation. Water Resour. Res. 36(6), 1403–1412 (2000)

Isabeau, B., Giulio, G., Erwin, T.: Fractional truncated laplacians: representation formula. Fundam. Solut. Appl. arXiv:2010.02707 [math.AP], 2020

Bruno, B., Romuald, E.: Discrete time approximation of decoupled Forward-Backward SDE with jumps. Stochastic Processes and their Applications, Elsevier, 2008, 118 (1), pp. 53–75. ffhal00015486

Dimitri, B.: Machine and deep learning applications in particle physics. Int. J. Modern Phys. A 34(35):1930019 https://doi.org/10.1142/S0217751X19300199. arXiv:1912.08245v1 [physics.data-an]

Buckwar, E., Riedler, M.G.: Runge-Kutta methods for jump-diffusion differential equation. J. Comput. Appl. Math. 236, 1155–1182 (2011)

Luis, C., Luis, S.: An extension problem related to the fractional Laplacian. Comm. PDE Vol. 32, 2007 Issue 8 pp. 1245–1260

Carr, P., Geman, H., Madan, D.B., Yor, M.: The fine structure of asset returns: An empirical investigation. J. Bus. 75, 305–332 (2002)

Rama, C., Peter, T.: Financial modelling with jump processes. Chapman and Hall/CRC; 1st edition (December 30, 2003). ISBN-10: 1584884134, 552 pp

Gonzalo, D., Erwin, T.: The nonlocal inverse problem of Donsker And Varadhan, arXiv:2011.13295 [math.AP], 2020

D’Elia, M., Qiang, D., Glusa, C., Gunzburger, M., Xiaochuan, T., Zhi, Z.: Numerical methods for nonlocal and fractional models. Acta Numer. 2, 1–124 (2020)

Łukasz, D.: Backward Stochastic differential equations with jumps and their actuarial and financial applications. EEA series, Springer-Verlag London, 2013. https://doi.org/10.1007/978-1-4471-5331-3, 288+X pp

Eleonora, D.N., Giampiero, P., Enrico, V.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136(5), 521–573 (2012)

Di Nunno, G., Proske, B.Ø.F.: Malliavin Calculus for Levy Processes with Applications to Finance. Springer-Verlag, Berlin Heidelberg (2009). https://doi.org/10.1007/978-3-540-78572-9, XIV+418 pp

Qiang, D., Xiaochuan, T.: Stability of nonlocal dirichlet integrals and implications for peridynamic correspondence material modeling, SIAM J. Appl. Math. (2018) Vol. 78, No. 3, pp. 1536–1552, arXiv:1710.05119 [physics.comp-ph]

Dennis, E., Philipp, G., Arnulf, J., Christoph, S.: DNN Expression Rate Analysis of High-dimensional PDEs: Application to Option Pricing, Tech. Report 2018-33. Seminar for Applied Mathematics, ETH Zürich, Switzerland, 2018

Gilboa, G., Osher, S.: Nonlocal operators with applications to image processing. Multisc. Model. Simul. 7, 1005–1028 (2008)

Lukas, G., Christoph, S.: Deep ReLU neural network approximation for stochastic differential equations with jumps, arXiv:2102.11707 (2021)

Lukas, G., Christoph, S.: Deep ReLU network expression rates for option prices in high-dimensional, exponential Lévy models, arXiv:2101.11897 (2021)

Philipp, G., Fabian, H., Arnulf, J., Philippe, von W.: A proof that artificial neural networks overcome the curse of dimensionality in the numerical approximation of Black-Scholes partial differential equations, To appear in Mem. Amer. Math. Soc.; arXiv:1809.02362 (2018), 124 pages

Han, J., Jentzen, A.: Solving high-dimensional partial differential equations using deep learning. Proc. Natl. Acad. Sci. 115, 8505–8510 (2018)

Hornik, K.: Approximation capabilities of multilayer feedforward networks. Neural Netw. 4, 251–257 (1991)

Hure, C., Pham, H., Warin, X.: Deep backward schemes for high-dimensional nonlinear PDE’s. Math. Comp. 89, 1547–1579 (2020)

Martin, H., Arnulf, J., Thomas, K., Tuan, A.N., Philippe, von W.: Overcoming the curse of dimensionality in the numerical approximation of semilinear parabolic partial differential equations, arXiv:1807.01212 [math.PR], 2018. Accepted in Proc. Roy. Soc. A

Benjamin, J., Sylvie, M., Wojbor, A.W.: Nonlinear SDEs driven by Lévy processes and related PDEs. ALEA Lat. Am. J. Probab. Math. Stat. 4 (2008), 1–29. arXiv:0707.2723, 2007

Arturo, K.-H., Peter, T.: Jump-adapted discretization schemes for Lévy-driven SDEs, Stochastic Processes and their Applications, Volume 120, Issue 11, 2010, Pages 2258-2285, ISSN 0304-4149, https://doi.org/10.1016/j.spa.2010.07.001

Antoine, L., Ernesto, M., Soledad, T.: Numerical approximation of backward stochastic differential equations with jumps, 2007. ffinria-00357992v2

Moshe, L.I., Vladimir, Y.L., Allan, P., Shimon, S.: Multilayer feedforward networks with a nonpolynomial activation function can approximate any function. Neural Netw. 6, 861–867 (1993)

Geert, L., Thijs, K., Babak, E.B., Arnaud, A.A.S., Francesco, C., Mohsen, G., Jeroen, A.W.M., van der Laak, Bram, van G., Clara, I.S.: A survey on deep learning in medical image analysis. Med. Image Anal. 42, Pages 60–88 (2017), arXiv:1702.05747v2 [cs.CV] 4 Jun 2017

Martin, M., Andrew, M.N., Hendrick, W.H.: Neural network solutions to differential equations in non-convex domains: solving the electric field in the slit-well microfluidic device. Phys. Rev. Research 2, 033110 – Published 21 July 2020. ArXiv:2004.12235v1 [physics.comp-ph], 2020

Mahabal, A., Sheth, K., Gieseke, F., Pai, A., Djorgovski, S. G., Drake, A. J., Graham, M. J., CSS/CRTS/PTF Teams: Deep-learnt classification of light curves, 2017 IEEE Symposium Series on Computational Intelligence (SSCI), Honolulu, HI, 2017, pp. 1-8, https://doi.org/10.1109/SSCI.2017.8280984. arXiv:1709.06257v1 [astro-ph.IM]

Kevin, M., Kavita, B., Noah, S.: StreetStyle: Exploring world-wide clothing styles from millions of photos, arXiv:1706.01869v1 [cs.CV] 6 Jun 2017

Warreb, S.M., Pitts, W.: A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 5, 115–133 (1943)

Philip, E.: Protter. Stochastic integration and differential equations. Springer, Berlin (2004)

Rosenblatt, F.: The perceptron: a probabilistic model for information storage and organization in the brain. Psychol. Rev. 65, 6 (1958)

Justin, S., Konstantinos, S.: DGM: A deep learning algorithm for solving partial differential equations. J. Comput. Phys. 375, 15 December 2018, Pages 1339–1364, arXiv:1708.07469 [q-fin.MF], 2017

Pablo, R.S.: User’s guide to the fractional Laplacian and the method of semigroups, in: Fractional Differential Equations, Walter de Gruyter GmbH & Co KG, pp. 235–266, arXiv:1808.05159 [math.AP], 2018

Tadmor, E., Tan, C.: Critical thresholds in flocking hydrodynamics with non-local alignment. Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. 372, 20130401 (2014)

Giacomo, T., Guglielmo, M., Juan, C., Matthias, T., Roger, M., Giuseppe, C.: Neural-network quantum state tomography for many-body systems. Nat. Phys. 14, pages 447–450 (2018), arXiv:1703.05334v2 [cond-mat.dis-nn]

Haohan, W., Bhiksha, R.: On the origin of deep learning, arXiv:1702.07800v4 [cs.LG] 3 Mar 2017

Zhang, J.: A numerical scheme For BSDES. Ann. Appl. Prob. 14(1), 459–488 (2004)

Zhang, X.: Stochastic functional differential equations driven by levy processes and quasi-linear partial, integro-differential equation. Ann. Appl. Probab. 22(6), 2505–2538 (2012). arXiv:1106.3601 [math.PR]