Deep learning schemes for parabolic nonlocal integro-differential equations
Tóm tắt
Từ khóa
Tài liệu tham khảo
Grégoire, A.: Numerical Analysis and Optimization An introduction to mathematical modeling and numerical simulation. Oxford University Press; Illustrated edition (July 19: 472 pages. ISBN- 10, 9780805839852 (2007)
Md, Z.A., Tarek, M.T., Chris, Y., Stefan, W., Paheding, S., Mst, S.N., Mahmudul, H., Brian, C.V.E., Abdul, A.S.A., Vijayan, K.A.: A state-of-the-art survey on deep learning theory and architectures. Electronics 8(3), 292 (2019). https://doi.org/10.3390/electronics8030292
Ali, M.A., Hiam, A., Isam, A.Q., Amin, A., Wafaa, A.S.: Brain tumor classification using deep learning technique—a comparison between cropped, uncropped, and segmented lesion images with different sizes. Int. J. Adv. Trends Comput. Sci. Eng. 8(6), 2 (2019)
David, A.: Lévy processes and stohastic calculus, Cambridge Studies In Advanced Mathematics, 2nd Edition, (April 1, 2009). ISBN-10: 0521738652
Barles, G., Buckdahn, R., Pardoux, E.: Backward stochastic differential equations and integral-partial differential equations. Stochas. Stocha. Rep. 60, 57–83 (1996)
Guy, B., Olivier, L., Erwin, T.: Lipschitz regularity for integro-differential equations with coercive hamiltonians and applications to large time behavior. Nonlinearity, Volume 30, Number 2 (2017), arXiv:1602.07806 [math.AP]
Dalya, B.: Machine learning in astronomy: a practical overview, arXiv:1904.07248v1 [astro-ph.IM] 15 Apr 2019
Christian, B., Fabian, H., Martin, H., Arnulf, J., Thomas, K.: Overcoming the curse of dimensionality in the numerical approximation of Allen-Cahn partial differential equations via truncated full-history recursive multilevel Picard approximations, Accepted in J. Numer. Math. arXiv:1907.06729 [math.NA], 2019
Christian, B., Weinan, E., Arnulf, J.: Machine learning approximation algorithms for high-dimensional fully nonlinear partial differential equations and second-order backward stochastic differential equations, J. Nonlinear Sci. 29 (2019), 1563–1619, arXiv:1709.05963v1 [math.NA], 2017
Benson, D.A., Wheatcraft, S.W., Meerschaert, M.M.: Application of a fractional advection-dispersion equation. Water Resour. Res. 36(6), 1403–1412 (2000)
Isabeau, B., Giulio, G., Erwin, T.: Fractional truncated laplacians: representation formula. Fundam. Solut. Appl. arXiv:2010.02707 [math.AP], 2020
Bruno, B., Romuald, E.: Discrete time approximation of decoupled Forward-Backward SDE with jumps. Stochastic Processes and their Applications, Elsevier, 2008, 118 (1), pp. 53–75. ffhal00015486
Dimitri, B.: Machine and deep learning applications in particle physics. Int. J. Modern Phys. A 34(35):1930019 https://doi.org/10.1142/S0217751X19300199. arXiv:1912.08245v1 [physics.data-an]
Buckwar, E., Riedler, M.G.: Runge-Kutta methods for jump-diffusion differential equation. J. Comput. Appl. Math. 236, 1155–1182 (2011)
Luis, C., Luis, S.: An extension problem related to the fractional Laplacian. Comm. PDE Vol. 32, 2007 Issue 8 pp. 1245–1260
Carr, P., Geman, H., Madan, D.B., Yor, M.: The fine structure of asset returns: An empirical investigation. J. Bus. 75, 305–332 (2002)
Rama, C., Peter, T.: Financial modelling with jump processes. Chapman and Hall/CRC; 1st edition (December 30, 2003). ISBN-10: 1584884134, 552 pp
Gonzalo, D., Erwin, T.: The nonlocal inverse problem of Donsker And Varadhan, arXiv:2011.13295 [math.AP], 2020
D’Elia, M., Qiang, D., Glusa, C., Gunzburger, M., Xiaochuan, T., Zhi, Z.: Numerical methods for nonlocal and fractional models. Acta Numer. 2, 1–124 (2020)
Łukasz, D.: Backward Stochastic differential equations with jumps and their actuarial and financial applications. EEA series, Springer-Verlag London, 2013. https://doi.org/10.1007/978-1-4471-5331-3, 288+X pp
Eleonora, D.N., Giampiero, P., Enrico, V.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136(5), 521–573 (2012)
Di Nunno, G., Proske, B.Ø.F.: Malliavin Calculus for Levy Processes with Applications to Finance. Springer-Verlag, Berlin Heidelberg (2009). https://doi.org/10.1007/978-3-540-78572-9, XIV+418 pp
Qiang, D., Xiaochuan, T.: Stability of nonlocal dirichlet integrals and implications for peridynamic correspondence material modeling, SIAM J. Appl. Math. (2018) Vol. 78, No. 3, pp. 1536–1552, arXiv:1710.05119 [physics.comp-ph]
Dennis, E., Philipp, G., Arnulf, J., Christoph, S.: DNN Expression Rate Analysis of High-dimensional PDEs: Application to Option Pricing, Tech. Report 2018-33. Seminar for Applied Mathematics, ETH Zürich, Switzerland, 2018
Gilboa, G., Osher, S.: Nonlocal operators with applications to image processing. Multisc. Model. Simul. 7, 1005–1028 (2008)
Lukas, G., Christoph, S.: Deep ReLU neural network approximation for stochastic differential equations with jumps, arXiv:2102.11707 (2021)
Lukas, G., Christoph, S.: Deep ReLU network expression rates for option prices in high-dimensional, exponential Lévy models, arXiv:2101.11897 (2021)
Philipp, G., Fabian, H., Arnulf, J., Philippe, von W.: A proof that artificial neural networks overcome the curse of dimensionality in the numerical approximation of Black-Scholes partial differential equations, To appear in Mem. Amer. Math. Soc.; arXiv:1809.02362 (2018), 124 pages
Han, J., Jentzen, A.: Solving high-dimensional partial differential equations using deep learning. Proc. Natl. Acad. Sci. 115, 8505–8510 (2018)
Hornik, K.: Approximation capabilities of multilayer feedforward networks. Neural Netw. 4, 251–257 (1991)
Hure, C., Pham, H., Warin, X.: Deep backward schemes for high-dimensional nonlinear PDE’s. Math. Comp. 89, 1547–1579 (2020)
Martin, H., Arnulf, J., Thomas, K., Tuan, A.N., Philippe, von W.: Overcoming the curse of dimensionality in the numerical approximation of semilinear parabolic partial differential equations, arXiv:1807.01212 [math.PR], 2018. Accepted in Proc. Roy. Soc. A
Benjamin, J., Sylvie, M., Wojbor, A.W.: Nonlinear SDEs driven by Lévy processes and related PDEs. ALEA Lat. Am. J. Probab. Math. Stat. 4 (2008), 1–29. arXiv:0707.2723, 2007
Arturo, K.-H., Peter, T.: Jump-adapted discretization schemes for Lévy-driven SDEs, Stochastic Processes and their Applications, Volume 120, Issue 11, 2010, Pages 2258-2285, ISSN 0304-4149, https://doi.org/10.1016/j.spa.2010.07.001
Antoine, L., Ernesto, M., Soledad, T.: Numerical approximation of backward stochastic differential equations with jumps, 2007. ffinria-00357992v2
Moshe, L.I., Vladimir, Y.L., Allan, P., Shimon, S.: Multilayer feedforward networks with a nonpolynomial activation function can approximate any function. Neural Netw. 6, 861–867 (1993)
Geert, L., Thijs, K., Babak, E.B., Arnaud, A.A.S., Francesco, C., Mohsen, G., Jeroen, A.W.M., van der Laak, Bram, van G., Clara, I.S.: A survey on deep learning in medical image analysis. Med. Image Anal. 42, Pages 60–88 (2017), arXiv:1702.05747v2 [cs.CV] 4 Jun 2017
Martin, M., Andrew, M.N., Hendrick, W.H.: Neural network solutions to differential equations in non-convex domains: solving the electric field in the slit-well microfluidic device. Phys. Rev. Research 2, 033110 – Published 21 July 2020. ArXiv:2004.12235v1 [physics.comp-ph], 2020
Mahabal, A., Sheth, K., Gieseke, F., Pai, A., Djorgovski, S. G., Drake, A. J., Graham, M. J., CSS/CRTS/PTF Teams: Deep-learnt classification of light curves, 2017 IEEE Symposium Series on Computational Intelligence (SSCI), Honolulu, HI, 2017, pp. 1-8, https://doi.org/10.1109/SSCI.2017.8280984. arXiv:1709.06257v1 [astro-ph.IM]
Kevin, M., Kavita, B., Noah, S.: StreetStyle: Exploring world-wide clothing styles from millions of photos, arXiv:1706.01869v1 [cs.CV] 6 Jun 2017
Warreb, S.M., Pitts, W.: A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 5, 115–133 (1943)
Philip, E.: Protter. Stochastic integration and differential equations. Springer, Berlin (2004)
Rosenblatt, F.: The perceptron: a probabilistic model for information storage and organization in the brain. Psychol. Rev. 65, 6 (1958)
Justin, S., Konstantinos, S.: DGM: A deep learning algorithm for solving partial differential equations. J. Comput. Phys. 375, 15 December 2018, Pages 1339–1364, arXiv:1708.07469 [q-fin.MF], 2017
Pablo, R.S.: User’s guide to the fractional Laplacian and the method of semigroups, in: Fractional Differential Equations, Walter de Gruyter GmbH & Co KG, pp. 235–266, arXiv:1808.05159 [math.AP], 2018
Tadmor, E., Tan, C.: Critical thresholds in flocking hydrodynamics with non-local alignment. Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. 372, 20130401 (2014)
Giacomo, T., Guglielmo, M., Juan, C., Matthias, T., Roger, M., Giuseppe, C.: Neural-network quantum state tomography for many-body systems. Nat. Phys. 14, pages 447–450 (2018), arXiv:1703.05334v2 [cond-mat.dis-nn]
Haohan, W., Bhiksha, R.: On the origin of deep learning, arXiv:1702.07800v4 [cs.LG] 3 Mar 2017