Deep integro-difference equation models for spatio-temporal forecasting

Spatial Statistics - Tập 37 - Trang 100408 - 2020
Andrew Zammit-Mangion1, Christopher K. Wikle2
1School of Mathematics and Applied Statistics, University of Wollongong, Australia
2Department of Statistics, University of Missouri, USA

Tài liệu tham khảo

Allaire, 2018 Brynjarsdóttir, 2014, Learning about physical parameters: The importance of model discrepancy, Inverse Problems, 30, 10.1088/0266-5611/30/11/114007 Caines, 2018 Calder, 2011, Modeling space–time dynamics of aerosols using satellite data and atmospheric transport model output, J. Agric. Biol. Environ. Stat., 16, 495, 10.1007/s13253-011-0068-4 Coleman, 2005 Cressie, 1999, Classes of nonseparable, spatio-temporal stationary covariance functions, J. Amer. Statist. Assoc., 94, 1330, 10.1080/01621459.1999.10473885 Cressie, 2011 de Bezenac, E., Pajot, A., Gallinari, P., 2018. Deep learning for physical processes: Incorporating prior scientific knowledge. In: Proceedings of ICLR 2018. Vancouver, Canada. Dosovitskiy, A., Fischer, P., Ilg, E., Hausser, P., Hazirbas, C., Golkov, V., Van Der Smagt, P., Cremers, D., Brox, T., 2015. Flownet: Learning optical flow with convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision. Santiago, Chile, pp. 2758–2766. Freestone, 2011, A data-driven framework for neural field modeling, NeuroImage, 56, 1043, 10.1016/j.neuroimage.2011.02.027 Furrer, 2006, Covariance tapering for interpolation of large spatial datasets, J. Comput. Graph. Statist., 15, 502, 10.1198/106186006X132178 Gibson, 2005, Robust maximum-likelihood estimation of multivariable dynamic systems, Automatica, 41, 1667, 10.1016/j.automatica.2005.05.008 Gneiting, 2007, Geostatistical space–time models, stationarity, separability and full symmetry, 151 Gneiting, 2007, Strictly proper scoring rules, prediction, and estimation, J. Amer. Statist. Assoc., 102, 359, 10.1198/016214506000001437 Goodfellow, 2016 Hamilton, 1994 Katzfuss, 2016, Understanding the ensemble Kalman filter, Amer. Statist., 70, 350, 10.1080/00031305.2016.1141709 Katzfuss, 2020, Ensemble Kalman methods for high-dimensional hierarchical dynamic space–time models, J. Amer. Statist. Assoc., 10.1080/01621459.2019.1592753 Kot, 1996, Dispersal data and the spread of invading organisms, Ecology, 77, 2027, 10.2307/2265698 Kot, 1986, Discrete-time growth-dispersal models, Math. Biosci., 80, 109, 10.1016/0025-5564(86)90069-6 Leeds, 2014, Emulator-assisted reduced-rank ecological data assimilation for nonlinear multivariate dynamical spatio-temporal processes, Stat. Methodol., 17, 126, 10.1016/j.stamet.2012.11.004 McDermott, 2017, An ensemble quadratic echo state network for non-linear spatio-temporal forecasting, Stat, 6, 315, 10.1002/sta4.160 McDermott, 2019, Deep echo state networks with uncertainty quantification for spatio-temporal forecasting, Environmetrics, 30, 10.1002/env.2553 Montero, 2015 Nguyen, 2019 Pebesma, 2004, Multivariable geostatistics in S: the gstat package, Comput. Geosci., 30, 683, 10.1016/j.cageo.2004.03.012 R Core Team, 2019 Richardson, 2017, Flexible integro-difference equation modeling for spatio-temporal data, Comput. Statist. Data Anal., 109, 182, 10.1016/j.csda.2016.11.011 Richardson, 2018, Bayesian non-parametric modeling for integro-difference equations, Stat. Comput., 28, 87, 10.1007/s11222-016-9719-1 Shumway, 2006 Srivastava, 2014, Dropout: a simple way to prevent neural networks from overfitting, J. Mach. Learn. Res., 15, 1929 Tran, 2020, Bayesian deep net GLM and GLMM, J. Comput. Graph. Statist., 10.1080/10618600.2019.1637747 Wikle, 2002, A kernel-based spectral model for non-Gaussian spatio-temporal processes, Stat. Model., 2, 299, 10.1191/1471082x02st036oa Wikle, 2019, Comparison of deep neural networks and deep hierarchical models for spatio-temporal data, J. Agric. Biol. Environ. Stat., 24, 175, 10.1007/s13253-019-00361-7 Wikle, 2007, A Bayesian tutorial for data assimilation, Physica D, 230, 1, 10.1016/j.physd.2006.09.017 Wikle, 1999, A dimension-reduced approach to space–time Kalman filtering, Biometrika, 86, 815, 10.1093/biomet/86.4.815 Wikle, 2011, Polynomial nonlinear spatio-temporal integro-difference equation models, J. Time Series Anal., 32, 339, 10.1111/j.1467-9892.2011.00729.x Wikle, 2010, A general science-based framework for dynamical spatio-temporal models, Test, 19, 417, 10.1007/s11749-010-0209-z Wikle, 2001, Spatiotemporal hierarchical Bayesian modeling tropical ocean surface winds, J. Amer. Statist. Assoc., 96, 382, 10.1198/016214501753168109 Wikle, 2019 Xu, 2005, A kernel-based spatio-temporal dynamical model for nowcasting radar precipitation, J. Amer. Statist. Assoc., 100, 1133, 10.1198/016214505000000682 Zammit-Mangion, 2016, Non-Gaussian bivariate modelling with application to atmospheric trace-gas inversion, Spat. Stat., 18, 194, 10.1016/j.spasta.2016.06.005 Zammit-Mangion, 2015, Spatio-temporal bivariate statistical models for atmospheric trace-gas inversion, Chemometr. Intell. Lab. Syst., 149, 227, 10.1016/j.chemolab.2015.09.006 Zammit-Mangion, 2012, Point process modelling of the Afghan War Diary, Proc. Natl. Acad. Sci., 109, 12414, 10.1073/pnas.1203177109 Zammit-Mangion, 2019 Zammit Mangion, 2011, A variational approach for the online dual estimation of spatiotemporal systems governed by the IDE, IFAC Proc., 44, 3204, 10.3182/20110828-6-IT-1002.02459