Deep generative modeling for single-cell transcriptomics

Nature Methods - Tập 15 Số 12 - Trang 1053-1058 - 2018
Romain Lopez1, Jeffrey Regier1, Michael B. Cole2, Michael I. Jordan3, Nir Yosef4
1Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA, USA
2Department of Physics, University of California Berkeley, Berkeley, CA, USA
3Department of Statistics, University of California, Berkeley, Berkeley, CA, USA
4Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Semrau, S. et al. Dynamics of lineage commitment revealed by single-cell transcriptomics of differentiating embryonic stem cells. Nat. Commun. 8, 1096 (2017).

Gaublomme, J. T. et al. Single-cell genomics unveils critical regulators of Th17 cell pathogenicity. Cell 163, 1400–1412 (2015).

Patel, A. P. et al. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science 344, 1396–1401 (2014).

Kharchenko, P. V., Silberstein, L. & Scadden, D. T. Bayesian approach to single-cell differential expression analysis. Nat. Methods 11, 740–742 (2014).

Vallejos, C. A., Risso, D., Scialdone, A., Dudoit, S. & Marioni, J. C. Normalizing single-cell RNA sequencing data: challenges and opportunities. Nat. Methods 14, 565–571 (2017).

Shaham, U. et al. Removal of batch effects using distribution-matching residual networks. Bioinformatics 33, 2539–2546 (2017).

Wagner, A., Regev, A. & Yosef, N. Revealing the vectors of cellular identity with single-cell genomics. Nat. Biotechnol. 34, 1145–1160 (2016).

Prabhakaran, S., Azizi, E., Carr, A. & Pe’er, D. Dirichlet process mixture model for correcting technical variation in single-cell gene expression data. PMLR 48, 1070–1079 (2016).

Pierson, E. & Yau, C. ZIFA: dimensionality reduction for zero-inflated single-cell gene expression analysis. Genome. Biol. 16, 241 (2015).

Risso, D., Perraudeau, F., Gribkova, S., Dudoit, S. & Vert, J.-P. A general and flexible method for signal extraction from single-cell RNA-seq data. Nat. Commun. 9, 284 (2018).

Wang, B., Zhu, J., Pierson, E., Ramazzotti, D. & Batzoglou, S. Visualization and analysis of single-cell RNA-seq data by kernel-based similarity learning. Nat. Methods 14, 414–416 (2017).

van Dijk, D. et al. MAGIC: a diffusion-based imputation method reveals gene-gene interactions in single-cell RNA-sequencing data. bioRxiv Preprint at https://www.biorxiv.org/content/early/2017/02/25/111591 (2017).

Finak, G. et al. MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data. Genome. Biol. 16, 278 (2015).

Regev, A. et al. The Human Cell Atlas. eLife 6, e27041 (2017).

Gelman, A. & Hill, J. Data Analysis Using Regression and Multilevel/Hierarchical Models (Cambridge University Press, New York, 2007).

Grün, D., Kester, L. & van Oudenaarden, A. Validation of noise models for single-cell transcriptomics. Nat. Methods 11, 637–640 (2014).

Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome. Biol. 15, 550 (2014).

Ding, J., Condon, A. & Shah, S. P. Interpretable dimensionality reduction of single cell transcriptome data with deep generative models. Nat. Commun. 9, 2002 (2018).

Wang, D. & Gu, J. VASC: dimension reduction and visualization of single cell RNA sequencing data by deep variational autoencoder. bioRxiv Preprint at https://www.biorxiv.org/content/early/2017/10/06/199315 (2017).

Eraslan, G., Simon, L. M., Mircea, M., Mueller, N. S. & Theis, F. J. Single cell RNA-seq denoising using a deep count autoencoder. bioRxiv Preprint at https://www.biorxiv.org/content/early/2018/04/13/300681 (2018).

Grønbech, C. H. et al. scVAE: variational auto-encoders for single-cell gene expression data. bioRxiv Preprint at https://www.biorxiv.org/content/early/2018/05/16/318295 (2018).

Vallejos, C. A., Marioni, J. C. & Richardson, S. BASiCS: Bayesian analysis of single-cell sequencing data. PLoS Comput. Biol. 11, e1004333 (2015).

Cole, M. B. et al. Performance assessment and selection of normalization procedures for single-cell RNA-seq. bioRxiv Preprint at https://www.biorxiv.org/content/early/2018/05/18/235382 (2017).

Louizos, C., Swersky, K., Li, Y., Welling, M. & Zemel, R. The variational fair autoencoder. Oral presentation at the International Conference on Learning Representations, San Juan, Puerto Rico, 2–4 May 2016.

Kingma, D. P. & Welling, M. Auto-encoding variational Bayes. Oral presentation at the International Conference on Learning Representations, Banff, Alberta, Canada, 14–16 April 2014.

Blei, D. M., Kucukelbir, A. & McAuliffe, J. D. Variational inference: a review for statisticians. J. Am. Stat. Assoc. 112, 859–877 (2017).

Sønderby, C. K., Raiko, T., Maaløe, L., Sønderby, S. K. & Winther, O. Ladder variational autoencoders. In Advances in Neural Information Processing Systems (eds Lee, D. D. et al.) 3738–3746 (NIPS Foundation, La Jolla, CA, 2016).

10x Genomics. Support: single cell gene expression datasets. 10x Genomics https://support.10xgenomics.com/single-cell-gene-expression/datasets (2017).

Zeisel, A. et al. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science 347, 1138–1142 (2015).

Zheng, G. X. Y. et al. Massively parallel digital transcriptional profiling of single cells. Nat. Commun. 8, 14049 (2017).

Shekhar, K. et al. Comprehensive classification of retinal bipolar neurons by single-cell transcriptomics. Cell 166, 1308–1323 (2016).

Tusi, B. K. et al. Population snapshots predict early haematopoietic and erythroid hierarchies. Nature 555, 54–60 (2018).

Stoeckius, M. et al. Simultaneous epitope and transcriptome measurement in single cells. Nat. Methods 14, 865–868 (2017).

Johnson, W. E., Li, C. & Rabinovic, A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics 8, 118–127 (2007).

Haghverdi, L., Lun, A. T. L., Morgan, M. D. & Marioni, J. C. Batch effects in single-cell RNA-sequencing data are corrected by matching mutual nearest neighbors. Nat. Biotechnol. 36, 421–427 (2018).

Kass, R. E. & Raftery, A. E. Bayes factors. J. Am. Stat. Assoc. 90, 773–795 (1995).

Held, L. & Ott, M. On p-values and Bayes factors. Annu. Rev. Stat. Appl. 5, 393–419 (2018).

Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).

Nakaya, H. I. et al. Systems biology of vaccination for seasonal influenza in humans. Nat. Immunol. 12, 786–795 (2011).

Görgün, G., Holderried, T. A. W., Zahrieh, D., Neuberg, D. & Gribben, J. G. Chronic lymphocytic leukemia cells induce changes in gene expression of CD4 and CD8 T cells. J. Clin. Invest. 115, 1797–1805 (2005).

Li, Q., Brown, J. B., Huang, H. & Bickel, P. J. Measuring reproducibility of high-throughput experiments. Ann. Appl. Stat. 5, 1752–1779 (2011).

Zoph, B. & Le, Q. Neural architecture search with reinforcement learning. Oral presentation at the International Conference on Learning Representations, Toulon, France, 24–26 April 2017.

Bergstra, J. S., Bardenet, R., Bengio, Y. & Kégl, B. Algorithms for hyper-parameter optimization. In Advances in Neural Information Processing Systems 24 (eds Shawe-Taylor, J. et al.) 2546–2554 (NIPS Foundation, La Jolla, CA, 2011).

Tanay, A. & Regev, A. Scaling single-cell genomics from phenomenology to mechanism. Nature 541, 331–338 (2017).

DeTomaso, D. & Yosef, N. FastProject: a tool for low-dimensional analysis of single-cell RNA-Seq data. BMC Bioinformatics 17, 315 (2016).

Fan, J. et al. Characterizing transcriptional heterogeneity through pathway and gene set overdispersion analysis. Nat. Methods 13, 241–244 (2016).

Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: large-scale single-cell gene expression data analysis. Genome. Biol. 19, 15 (2018).