Deep defect level engineering: a strategy of optimizing the carrier concentration for high thermoelectric performance

Energy and Environmental Science - Tập 11 Số 4 - Trang 933-940
Qian Zhang1,2,3,4, Qichen Song5,6,7, Xinyu Wang1,2,3,4, Jingying Sun8,9,10, Qing Zhu8,9,10, Keshab Dahal8,9,10, Xi Lin1,2,3,4, Feng Cao3,11,4, Jiawei Zhou5,6,7, Shuo Chen8,9,10, Gang Chen5,6,7, Jun Mao8,9,10, Zhifeng Ren8,9,10
1Department of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, Guangdong 518055, P. R. China
2Harbin Institute of Technology
3P. R. China
4Shenzhen
5Cambridge
6Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 USA
7Massachusetts Institute of Technology,
8Department of Physics and TcSUH, University of Houston, Houston, Texas 77204, USA
9Houston
10University of Houston,
11School of Science, Harbin Institute of Technology, Shenzhen, Guangdong 518055, P. R. China

Tóm tắt

Thermoelectric properties are heavily dependent on the carrier concentration, and therefore the optimization of carrier concentration plays a central role in achieving high thermoelectric performance.

Từ khóa


Tài liệu tham khảo

DiSalvo, 1999, Science, 285, 703, 10.1126/science.285.5428.703

Bell, 2008, Science, 321, 1457, 10.1126/science.1158899

A. F. Ioffe , Semiconductor thermoelements and thermoelectric cooling , Infosearch , London , 1957

Snyder, 2008, Nat. Mater., 7, 105, 10.1038/nmat2090

H. J. Goldsmid , Introduction to thermoelectricity , Springer Science & Business Media , 2009

Pei, 2012, Adv. Mater., 24, 6125, 10.1002/adma.201202919

Pei, 2011, Adv. Energy Mater., 1, 291, 10.1002/aenm.201000072

Zhao, 2017, Nat. Nanotechnol., 12, 55, 10.1038/nnano.2016.182

Pei, 2011, Adv. Mater., 23, 5674, 10.1002/adma.201103153

Kane, 1957, J. Phys. Chem. Solids, 1, 249, 10.1016/0022-3697(57)90013-6

Pei, 2014, Adv. Energy Mater., 4, 1400486, 10.1002/aenm.201400486

H. Wang , Y.Pei , A. D.LaLonde and G. J.Snyder , Thermoelectric Nanomaterials , Springer , 2013 , pp. 3–32

Wang, 2012, Proc. Natl. Acad. Sci. U. S. A., 109, 9705, 10.1073/pnas.1111419109

Wright, 1970, Metall. Rev., 15, 147, 10.1179/imr.1970.15.1.147

Dughaish, 2002, Phys. Rev. B: Condens. Matter Mater. Phys., 322, 205

Gelbstein, 2005, Phys. Rev. B: Condens. Matter Mater. Phys., 363, 196

LaLonde, 2011, Energy Environ. Sci., 4, 2090, 10.1039/c1ee01314a

Fu, 2017, Energy Environ. Sci., 10, 2030, 10.1039/C7EE01871A

Weiser, 1981, Phys. Rev. B: Condens. Matter Mater. Phys., 23, 2741, 10.1103/PhysRevB.23.2741

Xiong, 2010, J. Phys. D: Appl. Phys., 43, 405403, 10.1088/0022-3727/43/40/405403

Bali, 2014, J. Appl. Phys., 116, 033707, 10.1063/1.4890320

Kaĭdanov, 1985, Phys.-Usp., 28, 31

Lischka, 1986, Phys. Status Solidi, 133, 17, 10.1002/pssb.2221330104

Ahmad, 2006, Phys. Rev. Lett., 96, 056403, 10.1103/PhysRevLett.96.056403

Hoang, 2007, Phys. Rev. B: Condens. Matter Mater. Phys., 76, 115432, 10.1103/PhysRevB.76.115432

Jovovic, 2008, J. Appl. Phys., 103, 053710, 10.1063/1.2890150

Zhang, 2016, Nano Energy, 22, 572, 10.1016/j.nanoen.2016.02.040

Averkin, 1971, Sov. Phys. Semiconduct., 5, 75

Guch, 2012, J. Appl. Phys., 111, 063706, 10.1063/1.3694742

K. Hess , Advanced theory of semiconductor devices , IEEE Press , 2000

Pei, 2011, Adv. Funct. Mater., 21, 241, 10.1002/adfm.201000878

Xiao, 2017, J. Am. Chem. Soc., 139, 18732, 10.1021/jacs.7b11662

Kresse, 1993, Phys. Rev. B: Condens. Matter Mater. Phys., 47, 558, 10.1103/PhysRevB.47.558

Kresse, 1994, Phys. Rev. B: Condens. Matter Mater. Phys., 49, 14251, 10.1103/PhysRevB.49.14251

Kresse, 1996, Phys. Rev. B: Condens. Matter Mater. Phys., 54, 11169, 10.1103/PhysRevB.54.11169

Kresse, 1996, Comput. Mater. Sci., 6, 15, 10.1016/0927-0256(96)00008-0

Blöchl, 1994, Phys. Rev. B: Condens. Matter Mater. Phys., 49, 16223, 10.1103/PhysRevB.49.16223

Kresse, 1999, Phys. Rev. B: Condens. Matter Mater. Phys., 59, 1758, 10.1103/PhysRevB.59.1758