Deep convolutional neural networks with transfer learning for automated brain image classification

Taranjit Kaur1, Tapan Kumar Gandhi1
1Department of Electrical Engineering, Indian Institute of Technology Delhi, Hauz Khas, India

Tóm tắt

Từ khóa


Tài liệu tham khảo

Lee, M.C., Nelson, S.J.: Supervised pattern recognition for the prediction of contrast-enhancement appearance in brain tumors from multivariate magnetic resonance imaging and spectroscopy. Artif. Intell. Med. 43, 61–74 (2008)

Zacharaki, E.I., Wang, S., Chawla, S., Soo, D.: Classification of brain tumor type and grade using MRI texture and shape in a machine learning scheme. Magn. Reson. Med. 62, 1609–1618 (2009)

Wang, S., Kim, S., Chawla, S., Wolf, R.L., Zhang, W., Rourke, D.M.O., Judy, K.D., Melhem, E.R., Poptani, H.: Differentiation between glioblastomas and solitary brain metastases using diffusion tensor imaging. Neuroimage 44, 653–660 (2010)

Hemanth, D.J., Vijila, C.K.S., Selvakumar, A.I., Anitha, J.: Performance enhanced hybrid kohonen-hopfield neural network for abnormal brain image classification. In: Kim, T., Adeli, H., Ramos, C., Kang, B.-H. (eds.) Signal processing, image processing and pattern recognition, pp. 356–365. Springer (2011)

Zollner, F.G., Emblem, K.E., Schad, L.R., Zöllner, F.G., Emblem, K.E., Schad, L.R.: SVM-based glioma grading: optimization by feature reduction analysis. J. Med. Phys. 22, 205–214 (2012)

Sachdeva, J., Kumar, V., Gupta, I., Khandelwal, N., Ahuja, C.K.: Segmentation, feature extraction, and multiclass brain tumor classification. J. Digit. Imaging 26, 1141–1150 (2013)

Skogen, K., Schulz, A., Dormagen, J.B., Ganeshan, B., Helseth, E., Server, A.: Diagnostic performance of texture analysis on MRI in grading cerebral gliomas. Eur. J. Radiol. 85, 824–829 (2016)

Bahadure, N.B., Ray, A.K., Thethi, H.P.: Comparative approach of MRI-based brain tumor segmentation and classification using genetic algorithm. J. Digit. Imaging 31, 477–489 (2018)

Lahmiri, S.: Glioma detection based on multi-fractal features of segmented brain MRI by particle swarm optimization techniques. Biomed. Signal Process. Control 31, 148–155 (2017)

Gupta, N., Bhatele, P., Khanna, P.: Glioma detection on brain MRIs using texture and morphological features with ensemble learning. Biomed. Signal Process. Control 47, 115–125 (2019)

Sachdeva, J., Kumar, V., Gupta, I., Khandelwal, N., Ahuja, C.K.: A package-SFERCB-“Segmentation, feature extraction, reduction and classification analysis by both SVM and ANN for brain tumors”. Appl. Soft Comput. 47, 151–167 (2016)

Zhang, Y., Wang, S., Ji, G., Dong, Z.: An MR brain images classifier system via particle swarm optimization and kernel support vector machine. Sci. World J. 2013, 1–9 (2013)

Yang, G., Zhang, Y., Yang, J., Ji, G., Dong, Z., Wang, S., Feng, C., Wang, Q.: Automated classification of brain images using wavelet-energy and biogeography-based optimization. Multimed. Tools Appl. 75, 15601–15617 (2016)

Lu, S., Qiu, X., Shi, J., Li, N., Lu, Z.-H., Chen, P., Yang, M.-M., Liu, F.-Y., Jia, W.-J., Zhang, Y.: A pathological brain detection system based on extreme learning machine optimized by bat algorithm. CNS Neurol. Disord. Targets (Formerly Curr. Drug Targets-CNS Neurol. Disord) 16, 23–29 (2017)

Wang, S., Zhang, Y., Dong, Z., Du, S., Ji, G., Yan, J., Yang, J., Wang, Q., Feng, C., Phillips, P.: Feed-forward neural network optimized by hybridization of PSO and ABC for abnormal brain detection. Int. J. Imaging Syst. Technol. 25, 153–164 (2015)

Zhang, Y., Wang, S., Dong, Z., Phillip, P., Ji, G., Yang, J.: Pathological brain detection in magnetic resonance imaging scanning by wavelet entropy and hybridization of biogeography-based optimization and particle swarm optimization. Prog. Electromagn. Res. 152, 41–58 (2015)

Acharya, U.R., Oh, S.L., Hagiwara, Y., Tan, J.H., Adeli, H.: Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals. Comput. Biol. Med. 100, 270–278 (2017)

Bar, Y., Diamant, I., Wolf, L., Lieberman, S., Konen, E., Greenspan, H.: Chest pathology detection using deep learning with non-medical training. In: ISBI. pp. 294–297 (2015)

Zhou, M., Tian, C., Cao, R., Wang, B., Niu, Y., Hu, T., Guo, H., Xiang, J.: Epileptic seizure detection based on EEG signals and CNN. Front. Neuroinform. 12, 95 (2018)

Hoo-Chang, S., Roth, H.R., Gao, M., Lu, L., Xu, Z., Nogues, I., Yao, J., Mollura, D., Summers, R.M.: Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Trans. Med. Imaging 35, 1285–1298 (2016)

Yousefi, M., Krzyżak, A., Suen, C.Y.: Mass detection in digital breast tomosynthesis data using convolutional neural networks and multiple instance learning. Comput. Biol. Med. 96, 283–293 (2018)

Zuo, H., Fan, H., Blasch, E., Ling, H.: Combining convolutional and recurrent neural networks for human skin detection. IEEE Signal Process. Lett. 24, 289–293 (2017)

Charron, O., Lallement, A., Jarnet, D., Noblet, V., Clavier, J.-B., Meyer, P.: Automatic detection and segmentation of brain metastases on multimodal MR images with a deep convolutional neural network. Comput. Biol. Med. 95, 43–54 (2018)

Abiwinanda, N., Hanif, M., Hesaputra, S.T., Handayani, A., Mengko, T.R.: Brain tumor classification using convolutional neural network. World Congr. Med. Phys. Biomed. Eng. 2018, 183–189 (2019)

Afshar, P., Plataniotis, K.N., Mohammadi, A.: Capsule networks for brain tumor classification based on mri images and coarse tumor boundaries. In: ICASSP 2019-2019 IEEE international conference on acoustics, speech and signal processing (ICASSP). pp. 1368–1372 (2019)

Deniz, E., Şengür, A., Kadiroğlu, Z., Guo, Y., Bajaj, V., Budak, Ü.: Transfer learning based histopathologic image classification for breast cancer detection. Heal. Inf. Sci. Syst. 6, 18 (2018)

Hussein, S., Kandel, P., Bolan, C.W., Wallace, M.B., Bagci, U.: Lung and pancreatic tumor characterization in the deep learning era: novel supervised and unsupervised learning approaches. IEEE Trans. Med. Imaging 38, 1777–1787 (2019)

Ahmed, K.B., Hall, L.O., Goldgof, D.B., Liu, R., Gatenby, R.A.: Fine-tuning convolutional deep features for MRI based brain tumor classification. In: Medical imaging 2017: computer-aided diagnosis, p. 101342E (2017)

Deepak, S., Ameer, P.M.: Brain tumor classification using deep CNN features via transfer learning. Comput. Biol. Med. 111, 103345 (2019)

Swati, Z.N.K., Zhao, Q., Kabir, M., Ali, F., Ali, Z., Ahmed, S., Lu, J.: Brain tumor classification for MR images using transfer learning and fine-tuning. Comput. Med. Imaging Graph. 75, 34–46 (2019)

Talo, M., Baloglu, U.B., Yıldırım, Ö., Acharya, U.R.: Application of deep transfer learning for automated brain abnormality classification using MR images. Cogn. Syst. Res. 54, 176–188 (2019)

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M.: others: imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 115, 211–252 (2015)

Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems, pp. 1097–1105. Lake Tahoe, NV (2012)

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1–9 (2015)

He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778 (2016)

Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv Prepr. arXiv:1409.1556 (2014)

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 2818–2826 (2016)

Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.A.: Inception-v4, inception-resnet and the impact of residual connections on learning. In: AAAI, p. 12 (2017)

Tajbakhsh, N., Shin, J.Y., Gurudu, S.R., Hurst, R.T., Kendall, C.B., Gotway, M.B., Liang, J.: Convolutional neural networks for medical image analysis: full training or fine tuning? IEEE Trans. Med. Imaging 35, 1299–1312 (2016)

Harvard Medical School, http://med.harvard.edu/AANLIB/

Gupta, T., Gandhi, T.K., Gupta, R.K., Panigrahi, B.K.: Classification of patients with tumor using MR FLAIR images. Pattern Recognit. Lett. (2017). https://doi.org/10.1016/j.patrec.2017.10.037

Gupta, T., Gandhi, T.K., Panigrahi, B.K.: Multi-sequential MR brain image classification for tumor detection. J. Intell. Fuzzy Syst. 32, 3575–3583 (2017)

Cheng, J.: brain tumor dataset, https://figshare.com/articles/brain_tumor_dataset/1512427

Nayak, D.R., Dash, R., Majhi, B., Ranjan, D., Dash, R., Majhi, B.: Brain MR image classification using two-dimensional discrete wavelet transform and AdaBoost with random forests. Neurocomputing 177, 188–197 (2016)

Fawcett, T.: ROC graphs: notes and practical considerations for researchers. Mach. Learn. 31, 1–38 (2004)

Zollner, F.G., Emblem, K.E., Schad, L.R.: SVM-based glioma grading: Optimization by feature reduction analysis. J. Med. Phys. 22, 205–214 (2012)

Guyon, I., Weston, J., Barnhill, S., Vapnik, V.: Gene selection for cancer classification using support vector machines. Mach. Learn. 46, 389–422 (2002)

Rakotomamonjy, A.: Variable selection using SVM-based criteria. J. Mach. Learn. Res. 3, 1357–1370 (2003)

Emblem, K.E., Nedregaard, B., Hald, J.K., Nome, T., Due-Tonnessen, P., Bjornerud, A.: Automatic glioma characterization from dynamic susceptibility contrast imaging: brain tumor segmentation using knowledge-based fuzzy clustering. J. Magn. Reson. Imaging 30, 1–10 (2009)

Sachdeva, J., Kumar, V., Gupta, I., Khandelwal, N., Ahuja, C.K.: A novel content-based active contour model for brain tumor segmentation. Magn. Reson. Imaging 30, 694–715 (2012)

Hemanth, J.D., Anitha, J.: Modified Genetic Algorithm approaches for classification. Appl. Soft Comput. J. 75, 21–28 (2019)

Chaplot, S., Patnaik, L.M., Jagannathan, N.R.: Classification of magnetic resonance brain images using wavelets as input to support vector machine and neural network. Biomed. Eng. Online 1, 86–92 (2006)

El-Dahshan, E.-S.A., Hosny, T., Salem, A.-B.M.: Hybrid intelligent techniques for MRI brain images classification. Digit. Signal Process. 20, 433–441 (2010)

Lahmiri, S.: An Application of the empirical mode decomposition to brain magnetic resonance images classification. In: Fourth latin American symposium on circuits and systems (LASCAS), pp. 1–4 (2013)

Zhang, Y., Dong, Z., Wang, S., Ji, G., Yang, J.: Preclinical diagnosis of magnetic resonance (MR) brain images via discrete wavelet packet transform with Tsallis entropy and generalized eigenvalue proximal support vector machine (GEPSVM). Entropy 17, 1795–1813 (2015)

Zhang, Y., Dong, Z., Wu, L., Wang, S.: A hybrid method for MRI brain image classification. Expert Syst. Appl. 38, 10049–10053 (2011)

Zhang, Y., Wu, L.: An MR brain images classifier via principal component analysis and kernel support vector machine. Prog. Electromagn. Res. 130, 369–388 (2012)

Saritha, M., Joseph, K.P., Mathew, A.T.: Classification of MRI brain images using combined wavelet entropy based spider web plots and probabilistic neural network. Pattern Recognit. Lett. 34, 2151–2156 (2013)

El-Dahshan, E.-S.A., Mohsen, H.M., Revett, K., Salem, A.-B.M.: Computer-aided diagnosis of human brain tumor through MRI: a survey and a new algorithm. Expert Syst. Appl. 41, 5526–5545 (2014)

Das, S., Chowdhury, M., Kundu, M.K.: Brain MR image classification using multiscale geometric analysis of ripplet. Prog. Electromagn. Res. 137, 1–17 (2013)

Sahu, O., Anand, V., Kanhangad, V., Pachori, R.B.: Classification of magnetic resonance brain images using bi-dimensional empirical mode decomposition and autoregressive model. Biomed. Eng. Lett. 5, 311–320 (2015)

Nayak, D.R., Dash, R., Majhi, B.: Discrete ripplet-II transform and modified PSO based improved evolutionary extreme learning machine for pathological brain detection. Neurocomputing 282, 232–247 (2018)

Zhang, Y.-D., Jiang, Y., Zhu, W., Lu, S., Zhao, G.: Exploring a smart pathological brain detection method on pseudo Zernike moment. Multimed. Tools Appl. 77, 22589–22604 (2018)

Kaur, T., Saini, B., Gupta, S.: Quantitative metric for MR brain tumor grade classification using sample space density measure of analytic intrinsic mode function representation. IET Image Process. 11, 620–632 (2017)

Cheng, J., Huang, W., Cao, S., Yang, R., Yang, W., Yun, Z., Wang, Z., Feng, Q.: Enhanced performance of brain tumor classification via tumor region augmentation and partition. PLoS ONE 10, e0140381 (2015)

Pashaei, A., Sajedi, H., Jazayeri, N.: Brain tumor classification via convolutional neural network and extreme learning machines. In: 2018 8th International conference on computer and knowledge engineering (ICCKE), pp. 314–319 (2018)

Ismael, M.R., Abdel-Qader, I.: Brain tumor classification via statistical features and back-propagation neural network. In: 2018 IEEE international conference on electro/information technology (EIT), pp. 252–257 (2018)