Deep UV transparent conductive oxide thin films realized through degenerately doped wide-bandgap gallium oxide
Tài liệu tham khảo
Ellmer, 2012, Past achievements and future challenges in the development of optically transparent electrodes, Nat. Photonics, 6, 809, 10.1038/nphoton.2012.282
Yu, 2016, Metal oxides for optoelectronic applications, Nat. Mater., 15, 383, 10.1038/nmat4599
Morales-Masis, 2017, Transparent electrodes for efficient optoelectronics, Adv. Electron. Mater., 3, 1600529, 10.1002/aelm.201600529
Shi, 2021, Wide bandgap oxide semiconductors: from materials physics to optoelectronic devices, Adv. Mater., 33, e2006230, 10.1002/adma.202006230
Kneissl, 2019, The emergence and prospects of deep-ultraviolet light-emitting diode technologies, Nat. Photonics, 13, 233, 10.1038/s41566-019-0359-9
Park, 2020, SrNbO3 as a transparent conductor in the visible and ultraviolet spectra, Commun. Phys., 3, 102, 10.1038/s42005-020-0372-9
Kim, 2014, A universal method of producing transparent electrodes using wide-bandgap materials, Adv. Funct. Mater., 24, 1575, 10.1002/adfm.201301697
Hosono, 2007, Recent progress in transparent oxide semiconductors: materials and device application, Thin Solid Films, 515, 6000, 10.1016/j.tsf.2006.12.125
Zaumseil, 2007, Electron and ambipolar transport in organic field-effect transistors, Chem. Rev., 107, 1296, 10.1021/cr0501543
Gwinner, 2010, Solution-processed zinc oxide as high-performance air-stable electron injector in organic ambipolar light-emitting field-effect transistors, Adv. Funct. Mater., 20, 3457, 10.1002/adfm.201000785
Zhou, 2012, A universal method to produce low-work function electrodes for organic electronics, Science, 336, 327, 10.1126/science.1218829
Hosono, 2017, Transparent amorphous oxide semiconductors for organic electronics: application to inverted OLEDs, Proc. Natl. Acad. Sci. U S A, 114, 233, 10.1073/pnas.1617186114
Matsuishi, 2003, High-density electron anions in a nanoporous single crystal: [Ca24Al28O64]4+(4e-), Science, 301, 626, 10.1126/science.1083842
Miyakawa, 2007, High electron doping to a wide band gap semiconductor 12CaO∙7Al2O3 thin film, Appl. Phys. Lett., 90, 182105, 10.1063/1.2735280
Zhang, 2016, A strategy of transparent conductive oxide for UV focal plane array detector: two-step thermodynamic process, Adv. Electron. Mater., 2, 1600320, 10.1002/aelm.201600320
Wei, 2020, High electrical conducting deep-ultraviolet-transparent oxide semiconductor La-doped SrSnO3 exceeding ∼3000 S cm-1, Appl. Phys. Lett., 116, 022103, 10.1063/1.5128410
Pearton, 2018, A review of Ga2O3 materials, processing, and devices, Appl. Phys. Rev., 5, 011301, 10.1063/1.5006941
Chen, 2019, Review of gallium-oxide-based solar-blind ultraviolet photodetectors, Photonics Res., 7, 381, 10.1364/PRJ.7.000381
Zhang, 2020, Recent progress on the electronic structure, defect, and doping properties of Ga2O3, APL Mater., 8, 020906, 10.1063/1.5142999
Víllora, 2008, Electrical conductivity and carrier concentration control in β-Ga2O3 by Si doping, Appl. Phys. Lett., 92, 202120, 10.1063/1.2919728
Zhang, 2016, Toward controlling the carrier density of Si doped Ga2O3 films by pulsed laser deposition, Appl. Phys. Lett., 109, 102105, 10.1063/1.4962463
Leedy, 2017, Highly conductive homoepitaxial Si-doped Ga2O3 films on (010) β-Ga2O3 by pulsed laser deposition, Appl. Phys. Lett., 111, 012103, 10.1063/1.4991363
Ahmadi, 2017, Ge doping of β-Ga2O3 films grown by plasma-assisted molecular beam epitaxy, Appl. Phys. Express, 10, 041102, 10.7567/APEX.10.041102
Orita, 2000, Deep-ultraviolet transparent conductive β-Ga2O3 thin films, Appl. Phys. Lett., 77, 4166, 10.1063/1.1330559
Zhang, 2018, Demonstration of β-(AlxGa1-x)2O3/Ga2O3 double heterostructure field effect transistors, Appl. Phys. Lett., 112, 233503, 10.1063/1.5037095
Roy, 1952, Polymorphism of Ga2O3 and the system Ga2O3-H2O, J. Am. Chem. Soc., 74, 719, 10.1021/ja01123a039
He, 2006, First-principles study of the structural, electronic, and optical properties of Ga2O3 in its monoclinic and hexagonal phases, Phys. Rev. B, 74, 195123, 10.1103/PhysRevB.74.195123
Varley, 2010, Oxygen vacancies and donor impurities in β-Ga2O3, Appl. Phys. Lett., 97, 142106, 10.1063/1.3499306
Lany, 2018, Defect phase diagram for doping of Ga2O3, APL Mater., 6, 046103, 10.1063/1.5019938
Passlack, 1994, Dielectric properties of electron-beam deposited Ga2O3 films, Appl. Phys. Lett., 64, 2715, 10.1063/1.111452
Mohamed, 2010, The electronic structure of β-Ga2O3, Appl. Phys. Lett., 97, 211903, 10.1063/1.3521255
Mott, 1961, The transition to the metallic state, Philos. Mag., 6, 287, 10.1080/14786436108243318
Leedy, 2018, Si content variation and influence of deposition atmosphere in homoepitaxial Si-doped β-Ga2O3 films by pulsed laser deposition, APL Mater., 6, 101102, 10.1063/1.5047214
Baldini, 2016, Si- and Sn-doped homoepitaxial β-Ga2O3 layers grown by MOVPE on (010)-oriented substrates, ECS J. Solid State Sci. Technol., 6, Q3040, 10.1149/2.0081702jss
Nakagomi, 2012, Crystal orientation of β-Ga2O3 thin films formed on c-plane and a-plane sapphire substrate, J. Cryst. Growth, 349, 12, 10.1016/j.jcrysgro.2012.04.006
Nakagomi, 2013, Cross-sectional TEM imaging of β-Ga2O3 thin films formed on c-plane and a-plane sapphire substrates, Phys. Status Solidi A, 210, 1738, 10.1002/pssa.201329040
Burstein, 1954, Anomalous optical absorption limit in InSb, Phys. Rev., 93, 632, 10.1103/PhysRev.93.632
Moss, 1954, The interpretation of the properties of indium antimonide, Proc. Phys. Soc. B, 67, 775, 10.1088/0370-1301/67/10/306
Haacke, 1976, New figure of merit for transparent conductors, J. Appl. Phys., 47, 4086, 10.1063/1.323240
Bisht, 1999, Comparison of spray pyrolyzed FTO, ATO and ITO coatings for flat and bent glass substrates, Thin Solid Films, 351, 109, 10.1016/S0040-6090(99)00254-0
Ellmer, 2008, Carrier transport in polycrystalline ITO and ZnO:Al II: the influence of grain barriers and boundaries, Thin Solid Films, 516, 5829, 10.1016/j.tsf.2007.10.082
Reese, 2019, How much will gallium oxide power electronics cost?, Joule, 3, 903, 10.1016/j.joule.2019.01.011
Scofield, 1973, Theoretical photoionization cross sections from 1 to 1500 keV
Berggren, 1981, Band-gap narrowing in heavily doped many-valley semiconductors, Phys. Rev. B, 24, 1971, 10.1103/PhysRevB.24.1971
Jou, 2015, Approaches for fabricating high efficiency organic light emitting diodes, J. Mater. Chem. C, 3, 2974, 10.1039/C4TC02495H
Scanlon, 2012, On the possibility of p-type SnO2, J. Mater. Chem., 22, 25236, 10.1039/c2jm34352e
Höffling, 2012, Band discontinuities at Si-TCO interfaces from quasiparticle calculations: comparison of two alignment approaches, Phys. Rev. B, 85, 035305, 10.1103/PhysRevB.85.035305
Walsh, 2013, Limits to doping of wide band gap semiconductors, Chem. Mater., 25, 2924, 10.1021/cm402237s
Wei, 1999, Predicted band-gap pressure coefficients of all diamond and zinc-blende semiconductors: chemical trends, Phys. Rev. B, 60, 5404, 10.1103/PhysRevB.60.5404
Zhang, 1998, A phenomenological model for systematization and prediction of doping limits in II–VI and I–III–VI2 compounds, J. Appl. Phys., 83, 3192, 10.1063/1.367120
Zhang, 2002, The microscopic origin of the doping limits in semiconductors and wide-gap materials and recent developments in overcoming these limits: a review, J. Phys. Condens. Matter, 14, R881, 10.1088/0953-8984/14/34/201
Scanlon, 2013, Band gap engineering of In2O3 by alloying with Tl2O3, Appl. Phys. Lett., 103, 262108, 10.1063/1.4860986
Sobola, 2017, Influence of scanning rate on quality of AFM image: study of surface statistical metrics, Microsc. Res. Tech., 80, 1328, 10.1002/jemt.22945
Ţălu, 2015, Micro and nanoscale characterization of three dimensional surfaces
Yeh, 1985, Atomic subshell photoionization cross sections and asymmetry parameters: 1 ≤ Z≤103, Atom. Data Nucl. Data Tables, 32, 1, 10.1016/0092-640X(85)90016-6
Kresse, 1996, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B, 54, 11169, 10.1103/PhysRevB.54.11169
Kresse, 1996, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci., 6, 15, 10.1016/0927-0256(96)00008-0
Kresse, 1994, Ab initio molecular-dynamics simulation of the liquid-metal--amorphous-semiconductor transition in germanium, Phys. Rev. B, 49, 14251, 10.1103/PhysRevB.49.14251
Kresse, 1993, Ab initio molecular dynamics for liquid metals, Phys. Rev. B, 47, 558, 10.1103/PhysRevB.47.558
Blöchl, 1994, Projector augmented-wave method, Phys. Rev. B, 50, 17953, 10.1103/PhysRevB.50.17953
Kresse, 1999, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B, 59, 1758, 10.1103/PhysRevB.59.1758
Krukau, 2006, Influence of the exchange screening parameter on the performance of screened hybrid functionals, J. Chem. Phys., 125, 224106, 10.1063/1.2404663
Peelaers, 2015, Brillouin zone and band structure of β-Ga2O3, Phys. Status Solidi B, 252, 828, 10.1002/pssb.201451551
Deák, 2017, Choosing the correct hybrid for defect calculations: a case study on intrinsic carrier trapping in β-Ga2O3, Phys. Rev. B, 95, 075208, 10.1103/PhysRevB.95.075208
Broberg, 2018, PyCDT: a Python toolkit for modeling point defects in semiconductors and insulators, Comput. Phys. Commun., 226, 165, 10.1016/j.cpc.2018.01.004
Ganose, 2018, sumo: command-line tools for plotting and analysis of periodic ab initio calculations, J. Open Source Softw., 3, 717, 10.21105/joss.00717