Deep UV transparent conductive oxide thin films realized through degenerately doped wide-bandgap gallium oxide

Cell Reports Physical Science - Tập 3 - Trang 100801 - 2022
Jiaye Zhang1,2, Joe Willis3,4,5, Zhenni Yang1, Xu Lian6, Wei Chen6, Lai-Sen Wang7, Xiangyu Xu1, Tien-Lin Lee5, Lang Chen2, David O. Scanlon3,4, Kelvin H.L. Zhang1
1State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P.R. China
2Department of Physics, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
3Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
4Thomas Young Centre, University College London, Gower Street, London WC1E 6BT, UK
5Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
6Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
7Fujian Key Laboratory of Materials Genome, College of Materials, Xiamen University, Xiamen 361005, P.R. China

Tài liệu tham khảo

Ellmer, 2012, Past achievements and future challenges in the development of optically transparent electrodes, Nat. Photonics, 6, 809, 10.1038/nphoton.2012.282 Yu, 2016, Metal oxides for optoelectronic applications, Nat. Mater., 15, 383, 10.1038/nmat4599 Morales-Masis, 2017, Transparent electrodes for efficient optoelectronics, Adv. Electron. Mater., 3, 1600529, 10.1002/aelm.201600529 Shi, 2021, Wide bandgap oxide semiconductors: from materials physics to optoelectronic devices, Adv. Mater., 33, e2006230, 10.1002/adma.202006230 Kneissl, 2019, The emergence and prospects of deep-ultraviolet light-emitting diode technologies, Nat. Photonics, 13, 233, 10.1038/s41566-019-0359-9 Park, 2020, SrNbO3 as a transparent conductor in the visible and ultraviolet spectra, Commun. Phys., 3, 102, 10.1038/s42005-020-0372-9 Kim, 2014, A universal method of producing transparent electrodes using wide-bandgap materials, Adv. Funct. Mater., 24, 1575, 10.1002/adfm.201301697 Hosono, 2007, Recent progress in transparent oxide semiconductors: materials and device application, Thin Solid Films, 515, 6000, 10.1016/j.tsf.2006.12.125 Zaumseil, 2007, Electron and ambipolar transport in organic field-effect transistors, Chem. Rev., 107, 1296, 10.1021/cr0501543 Gwinner, 2010, Solution-processed zinc oxide as high-performance air-stable electron injector in organic ambipolar light-emitting field-effect transistors, Adv. Funct. Mater., 20, 3457, 10.1002/adfm.201000785 Zhou, 2012, A universal method to produce low-work function electrodes for organic electronics, Science, 336, 327, 10.1126/science.1218829 Hosono, 2017, Transparent amorphous oxide semiconductors for organic electronics: application to inverted OLEDs, Proc. Natl. Acad. Sci. U S A, 114, 233, 10.1073/pnas.1617186114 Matsuishi, 2003, High-density electron anions in a nanoporous single crystal: [Ca24Al28O64]4+(4e-), Science, 301, 626, 10.1126/science.1083842 Miyakawa, 2007, High electron doping to a wide band gap semiconductor 12CaO∙7Al2O3 thin film, Appl. Phys. Lett., 90, 182105, 10.1063/1.2735280 Zhang, 2016, A strategy of transparent conductive oxide for UV focal plane array detector: two-step thermodynamic process, Adv. Electron. Mater., 2, 1600320, 10.1002/aelm.201600320 Wei, 2020, High electrical conducting deep-ultraviolet-transparent oxide semiconductor La-doped SrSnO3 exceeding ∼3000 S cm-1, Appl. Phys. Lett., 116, 022103, 10.1063/1.5128410 Pearton, 2018, A review of Ga2O3 materials, processing, and devices, Appl. Phys. Rev., 5, 011301, 10.1063/1.5006941 Chen, 2019, Review of gallium-oxide-based solar-blind ultraviolet photodetectors, Photonics Res., 7, 381, 10.1364/PRJ.7.000381 Zhang, 2020, Recent progress on the electronic structure, defect, and doping properties of Ga2O3, APL Mater., 8, 020906, 10.1063/1.5142999 Víllora, 2008, Electrical conductivity and carrier concentration control in β-Ga2O3 by Si doping, Appl. Phys. Lett., 92, 202120, 10.1063/1.2919728 Zhang, 2016, Toward controlling the carrier density of Si doped Ga2O3 films by pulsed laser deposition, Appl. Phys. Lett., 109, 102105, 10.1063/1.4962463 Leedy, 2017, Highly conductive homoepitaxial Si-doped Ga2O3 films on (010) β-Ga2O3 by pulsed laser deposition, Appl. Phys. Lett., 111, 012103, 10.1063/1.4991363 Ahmadi, 2017, Ge doping of β-Ga2O3 films grown by plasma-assisted molecular beam epitaxy, Appl. Phys. Express, 10, 041102, 10.7567/APEX.10.041102 Orita, 2000, Deep-ultraviolet transparent conductive β-Ga2O3 thin films, Appl. Phys. Lett., 77, 4166, 10.1063/1.1330559 Zhang, 2018, Demonstration of β-(AlxGa1-x)2O3/Ga2O3 double heterostructure field effect transistors, Appl. Phys. Lett., 112, 233503, 10.1063/1.5037095 Roy, 1952, Polymorphism of Ga2O3 and the system Ga2O3-H2O, J. Am. Chem. Soc., 74, 719, 10.1021/ja01123a039 He, 2006, First-principles study of the structural, electronic, and optical properties of Ga2O3 in its monoclinic and hexagonal phases, Phys. Rev. B, 74, 195123, 10.1103/PhysRevB.74.195123 Varley, 2010, Oxygen vacancies and donor impurities in β-Ga2O3, Appl. Phys. Lett., 97, 142106, 10.1063/1.3499306 Lany, 2018, Defect phase diagram for doping of Ga2O3, APL Mater., 6, 046103, 10.1063/1.5019938 Passlack, 1994, Dielectric properties of electron-beam deposited Ga2O3 films, Appl. Phys. Lett., 64, 2715, 10.1063/1.111452 Mohamed, 2010, The electronic structure of β-Ga2O3, Appl. Phys. Lett., 97, 211903, 10.1063/1.3521255 Mott, 1961, The transition to the metallic state, Philos. Mag., 6, 287, 10.1080/14786436108243318 Leedy, 2018, Si content variation and influence of deposition atmosphere in homoepitaxial Si-doped β-Ga2O3 films by pulsed laser deposition, APL Mater., 6, 101102, 10.1063/1.5047214 Baldini, 2016, Si- and Sn-doped homoepitaxial β-Ga2O3 layers grown by MOVPE on (010)-oriented substrates, ECS J. Solid State Sci. Technol., 6, Q3040, 10.1149/2.0081702jss Nakagomi, 2012, Crystal orientation of β-Ga2O3 thin films formed on c-plane and a-plane sapphire substrate, J. Cryst. Growth, 349, 12, 10.1016/j.jcrysgro.2012.04.006 Nakagomi, 2013, Cross-sectional TEM imaging of β-Ga2O3 thin films formed on c-plane and a-plane sapphire substrates, Phys. Status Solidi A, 210, 1738, 10.1002/pssa.201329040 Burstein, 1954, Anomalous optical absorption limit in InSb, Phys. Rev., 93, 632, 10.1103/PhysRev.93.632 Moss, 1954, The interpretation of the properties of indium antimonide, Proc. Phys. Soc. B, 67, 775, 10.1088/0370-1301/67/10/306 Haacke, 1976, New figure of merit for transparent conductors, J. Appl. Phys., 47, 4086, 10.1063/1.323240 Bisht, 1999, Comparison of spray pyrolyzed FTO, ATO and ITO coatings for flat and bent glass substrates, Thin Solid Films, 351, 109, 10.1016/S0040-6090(99)00254-0 Ellmer, 2008, Carrier transport in polycrystalline ITO and ZnO:Al II: the influence of grain barriers and boundaries, Thin Solid Films, 516, 5829, 10.1016/j.tsf.2007.10.082 Reese, 2019, How much will gallium oxide power electronics cost?, Joule, 3, 903, 10.1016/j.joule.2019.01.011 Scofield, 1973, Theoretical photoionization cross sections from 1 to 1500 keV Berggren, 1981, Band-gap narrowing in heavily doped many-valley semiconductors, Phys. Rev. B, 24, 1971, 10.1103/PhysRevB.24.1971 Jou, 2015, Approaches for fabricating high efficiency organic light emitting diodes, J. Mater. Chem. C, 3, 2974, 10.1039/C4TC02495H Scanlon, 2012, On the possibility of p-type SnO2, J. Mater. Chem., 22, 25236, 10.1039/c2jm34352e Höffling, 2012, Band discontinuities at Si-TCO interfaces from quasiparticle calculations: comparison of two alignment approaches, Phys. Rev. B, 85, 035305, 10.1103/PhysRevB.85.035305 Walsh, 2013, Limits to doping of wide band gap semiconductors, Chem. Mater., 25, 2924, 10.1021/cm402237s Wei, 1999, Predicted band-gap pressure coefficients of all diamond and zinc-blende semiconductors: chemical trends, Phys. Rev. B, 60, 5404, 10.1103/PhysRevB.60.5404 Zhang, 1998, A phenomenological model for systematization and prediction of doping limits in II–VI and I–III–VI2 compounds, J. Appl. Phys., 83, 3192, 10.1063/1.367120 Zhang, 2002, The microscopic origin of the doping limits in semiconductors and wide-gap materials and recent developments in overcoming these limits: a review, J. Phys. Condens. Matter, 14, R881, 10.1088/0953-8984/14/34/201 Scanlon, 2013, Band gap engineering of In2O3 by alloying with Tl2O3, Appl. Phys. Lett., 103, 262108, 10.1063/1.4860986 Sobola, 2017, Influence of scanning rate on quality of AFM image: study of surface statistical metrics, Microsc. Res. Tech., 80, 1328, 10.1002/jemt.22945 Ţălu, 2015, Micro and nanoscale characterization of three dimensional surfaces Yeh, 1985, Atomic subshell photoionization cross sections and asymmetry parameters: 1 ≤ Z≤103, Atom. Data Nucl. Data Tables, 32, 1, 10.1016/0092-640X(85)90016-6 Kresse, 1996, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B, 54, 11169, 10.1103/PhysRevB.54.11169 Kresse, 1996, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci., 6, 15, 10.1016/0927-0256(96)00008-0 Kresse, 1994, Ab initio molecular-dynamics simulation of the liquid-metal--amorphous-semiconductor transition in germanium, Phys. Rev. B, 49, 14251, 10.1103/PhysRevB.49.14251 Kresse, 1993, Ab initio molecular dynamics for liquid metals, Phys. Rev. B, 47, 558, 10.1103/PhysRevB.47.558 Blöchl, 1994, Projector augmented-wave method, Phys. Rev. B, 50, 17953, 10.1103/PhysRevB.50.17953 Kresse, 1999, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B, 59, 1758, 10.1103/PhysRevB.59.1758 Krukau, 2006, Influence of the exchange screening parameter on the performance of screened hybrid functionals, J. Chem. Phys., 125, 224106, 10.1063/1.2404663 Peelaers, 2015, Brillouin zone and band structure of β-Ga2O3, Phys. Status Solidi B, 252, 828, 10.1002/pssb.201451551 Deák, 2017, Choosing the correct hybrid for defect calculations: a case study on intrinsic carrier trapping in β-Ga2O3, Phys. Rev. B, 95, 075208, 10.1103/PhysRevB.95.075208 Broberg, 2018, PyCDT: a Python toolkit for modeling point defects in semiconductors and insulators, Comput. Phys. Commun., 226, 165, 10.1016/j.cpc.2018.01.004 Ganose, 2018, sumo: command-line tools for plotting and analysis of periodic ab initio calculations, J. Open Source Softw., 3, 717, 10.21105/joss.00717