Deep Residual Networks With Dynamically Weighted Wavelet Coefficients for Fault Diagnosis of Planetary Gearboxes

IEEE Transactions on Industrial Electronics - Tập 65 Số 5 - Trang 4290-4300 - 2018
Minghang Zhao1, Myeongsu Kang2, Baoping Tang1, Michael Pecht2
1State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing, China
2Center for Advanced Life Cycle Engineering, University of Maryland, College Park, MD, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

10.1109/TIE.2016.2582729

10.3390/s17020414

10.1016/j.jsv.2016.05.027

10.1109/TIM.2017.2674738

10.1155/2015/390134

10.1109/CVPR.2016.90

10.1109/ICCV.2015.123

10.1109/5.726791

krizhevsky, 2012, ImageNet classification with deep convolutional neural networks, Proc 25th Int Conf Neural Inf Process Syst, 1097

he, 2016, Identity mappings in deep residual networks, Proc 14th Eur Conf Comput Vis, 630

10.1016/j.measurement.2013.11.012

van der maaten, 2008, Visualizing high-dimensional data using t-SNE, J Mach Learn Res, 9, 2579

10.1361/154770206X99343

10.1038/nature14539

10.1016/j.ymssp.2013.06.004

chen, 2016, An integrated approach to planetary gearbox fault diagnosis using deep belief networks, Meas Sci Technol, 28

10.1016/j.ymssp.2015.10.025

10.1109/TIE.2015.2464297

10.1109/TIE.2016.2519325

10.1109/TMAG.2010.2090890

10.1007/978-1-4612-0001-7

10.1109/CVPR.2016.308

goodfellow, 2016, Deep Learning

ioffe, 2015, Batch normalization: Accelerating deep network training by reducing internal covariate shift, Proceedings of the 32nd Intl Conf on Machine Learning, 448

glorot, 2011, Deep sparse rectifier neural networks, Proc 14th Int Conf Artif Intell Statist, 315

10.1109/TIE.2013.2273471

10.1007/BF01428124