Deep Reinforcement Learning-based policy for autonomous imaging planning of small celestial bodies mapping

Aerospace Science and Technology - Tập 120 - Trang 107224 - 2022
Margherita Piccinin1, Paolo Lunghi1, Michèle Lavagna1
1Politecnico di Milano, Via La Masa 34, 20156, Milano, Italy

Tài liệu tham khảo

Gaskell, 2008, Characterizing and navigating small bodies with imaging data, Meteorit. Planet. Sci., 43, 1049, 10.1111/j.1945-5100.2008.tb00692.x Giese, 1996, The topography of asteroid Ida: a comparison between photogrammetric and two-dimensional photoclinometric image analysis, Int. Arch. Photogramm. Remote Sens., 31, B3 Capannolo, 2019, Families of bounded orbits near binary asteroid 65803 Didymos, J. Guid. Control Dyn., 42, 189, 10.2514/1.G003437 Broschart, 2014, Quasi-terminator orbits near primitive bodies, Celest. Mech. Dyn. Astron., 120, 195, 10.1007/s10569-014-9574-3 Scheeres, 2012, Orbit mechanics about asteroids and comets, J. Guid. Control Dyn., 35, 987, 10.2514/1.57247 Scheeres, 2013, Design, dynamics and stability of the osiris-rex sun-terminator orbits, Adv. Astronaut. Sci., 148, 3263 Circi, 2019, Global mapping of asteroids by frozen orbits: the case of 216 Kleopatra, Acta Astronaut., 161, 101, 10.1016/j.actaastro.2019.05.026 Zhang, 2019, Spacecraft hovering flight in a binary asteroid system by using fuzzy logic control, IEEE Trans. Aerosp. Electron. Syst., 55, 3246, 10.1109/TAES.2019.2906435 Zeng, 2016, Solar sail body-fixed hovering over elongated asteroids, J. Guid. Control Dyn., 39, 1223, 10.2514/1.G001061 Pavlak, 2015 Broschart, 2005, Control of hovering spacecraft near small bodies: application to asteroid 25143 Itokawa, J. Guid. Control Dyn., 28, 343, 10.2514/1.3890 Wen, 2020, Hop reachable domain on irregularly shaped asteroids, J. Guid. Control Dyn., 43, 1269, 10.2514/1.G004682 de Santayana, 2015, Optical measurements for Rosetta navigation near the comet Feder, 1999, Adaptive mobile robot navigation and mapping, Int. J. Robot. Res., 18, 650, 10.1177/02783649922066484 Carrillo, 2012, On the comparison of uncertainty criteria for active slam, 2080 Kollar, 2008, Trajectory optimization using reinforcement learning for map exploration, Int. J. Robot. Res., 27, 175, 10.1177/0278364907087426 Agha-mohammadi, 2003, FIRM: sampling-based feedback motion planning under motion uncertainty and imperfect measurements, Int. J. Robot. Res., 33, 268, 10.1177/0278364913501564 Izzo, 2019, A survey on artificial intelligence trends in spacecraft guidance dynamics and control, Astrodynamics, 3, 287, 10.1007/s42064-018-0053-6 Gaudet, 2020, Reinforcement learning for angle-only intercept guidance of maneuvering targets, Aerosp. Sci. Technol., 99, 10.1016/j.ast.2020.105746 Zhou, 2020, Incremental model based online heuristic dynamic programming for nonlinear adaptive tracking control with partial observability, Aerosp. Sci. Technol., 105, 10.1016/j.ast.2020.106013 Riedmiller, 2005, Neural fitted q iteration – first experiences with a data efficient neural reinforcement learning method, 317 Mnih, 2015, Human-level control through deep reinforcement learning, Nature, 518, 529, 10.1038/nature14236 Li, 2006, Autonomous navigation and guidance for landing on asteroids, Aerosp. Sci. Technol., 10, 239, 10.1016/j.ast.2005.12.003 Shang, 2018, Parameter estimation for optimal asteroid transfer trajectories using supervised machine learning, Aerosp. Sci. Technol., 79, 570, 10.1016/j.ast.2018.06.002 Pesce, 2018, Autonomous navigation & mapping of small bodies, 1 Chan, 2019, Autonomous imaging and mapping of small bodies using deep reinforcement learning Piccinin, 2020, Deep reinforcement learning approach for small bodies shape reconstruction enhancement, 1909 Sutton, 2018 Durrant-Whyte, 2006, Simultaneous localization and mapping: part I, IEEE Robot. Autom. Mag., 13, 99, 10.1109/MRA.2006.1638022 Bailey, 2006, Simultaneous localization and mapping (slam): part II, IEEE Robot. Autom. Mag., 13, 108, 10.1109/MRA.2006.1678144 Cadena, 2016, Past, present, and future of simultaneous localization and mapping: toward the robust-perception age, IEEE Trans. Robot., 32, 1309, 10.1109/TRO.2016.2624754 Mihaylova, 2002, A comparison of decision making criteria and optimization methods for active robotic sensing, 316 Jiang, 2020, Path planning for asteroid hopping rovers with pre-trained deep reinforcement learning architectures, Acta Astronaut., 171, 265, 10.1016/j.actaastro.2020.03.007 Géron, 2017 Riedmiller, 1993, A direct adaptive method for faster backpropagation learning: the rprop algorithm, 586