Deep Reinforcement Learning-based policy for autonomous imaging planning of small celestial bodies mapping
Tài liệu tham khảo
Gaskell, 2008, Characterizing and navigating small bodies with imaging data, Meteorit. Planet. Sci., 43, 1049, 10.1111/j.1945-5100.2008.tb00692.x
Giese, 1996, The topography of asteroid Ida: a comparison between photogrammetric and two-dimensional photoclinometric image analysis, Int. Arch. Photogramm. Remote Sens., 31, B3
Capannolo, 2019, Families of bounded orbits near binary asteroid 65803 Didymos, J. Guid. Control Dyn., 42, 189, 10.2514/1.G003437
Broschart, 2014, Quasi-terminator orbits near primitive bodies, Celest. Mech. Dyn. Astron., 120, 195, 10.1007/s10569-014-9574-3
Scheeres, 2012, Orbit mechanics about asteroids and comets, J. Guid. Control Dyn., 35, 987, 10.2514/1.57247
Scheeres, 2013, Design, dynamics and stability of the osiris-rex sun-terminator orbits, Adv. Astronaut. Sci., 148, 3263
Circi, 2019, Global mapping of asteroids by frozen orbits: the case of 216 Kleopatra, Acta Astronaut., 161, 101, 10.1016/j.actaastro.2019.05.026
Zhang, 2019, Spacecraft hovering flight in a binary asteroid system by using fuzzy logic control, IEEE Trans. Aerosp. Electron. Syst., 55, 3246, 10.1109/TAES.2019.2906435
Zeng, 2016, Solar sail body-fixed hovering over elongated asteroids, J. Guid. Control Dyn., 39, 1223, 10.2514/1.G001061
Pavlak, 2015
Broschart, 2005, Control of hovering spacecraft near small bodies: application to asteroid 25143 Itokawa, J. Guid. Control Dyn., 28, 343, 10.2514/1.3890
Wen, 2020, Hop reachable domain on irregularly shaped asteroids, J. Guid. Control Dyn., 43, 1269, 10.2514/1.G004682
de Santayana, 2015, Optical measurements for Rosetta navigation near the comet
Feder, 1999, Adaptive mobile robot navigation and mapping, Int. J. Robot. Res., 18, 650, 10.1177/02783649922066484
Carrillo, 2012, On the comparison of uncertainty criteria for active slam, 2080
Kollar, 2008, Trajectory optimization using reinforcement learning for map exploration, Int. J. Robot. Res., 27, 175, 10.1177/0278364907087426
Agha-mohammadi, 2003, FIRM: sampling-based feedback motion planning under motion uncertainty and imperfect measurements, Int. J. Robot. Res., 33, 268, 10.1177/0278364913501564
Izzo, 2019, A survey on artificial intelligence trends in spacecraft guidance dynamics and control, Astrodynamics, 3, 287, 10.1007/s42064-018-0053-6
Gaudet, 2020, Reinforcement learning for angle-only intercept guidance of maneuvering targets, Aerosp. Sci. Technol., 99, 10.1016/j.ast.2020.105746
Zhou, 2020, Incremental model based online heuristic dynamic programming for nonlinear adaptive tracking control with partial observability, Aerosp. Sci. Technol., 105, 10.1016/j.ast.2020.106013
Riedmiller, 2005, Neural fitted q iteration – first experiences with a data efficient neural reinforcement learning method, 317
Mnih, 2015, Human-level control through deep reinforcement learning, Nature, 518, 529, 10.1038/nature14236
Li, 2006, Autonomous navigation and guidance for landing on asteroids, Aerosp. Sci. Technol., 10, 239, 10.1016/j.ast.2005.12.003
Shang, 2018, Parameter estimation for optimal asteroid transfer trajectories using supervised machine learning, Aerosp. Sci. Technol., 79, 570, 10.1016/j.ast.2018.06.002
Pesce, 2018, Autonomous navigation & mapping of small bodies, 1
Chan, 2019, Autonomous imaging and mapping of small bodies using deep reinforcement learning
Piccinin, 2020, Deep reinforcement learning approach for small bodies shape reconstruction enhancement, 1909
Sutton, 2018
Durrant-Whyte, 2006, Simultaneous localization and mapping: part I, IEEE Robot. Autom. Mag., 13, 99, 10.1109/MRA.2006.1638022
Bailey, 2006, Simultaneous localization and mapping (slam): part II, IEEE Robot. Autom. Mag., 13, 108, 10.1109/MRA.2006.1678144
Cadena, 2016, Past, present, and future of simultaneous localization and mapping: toward the robust-perception age, IEEE Trans. Robot., 32, 1309, 10.1109/TRO.2016.2624754
Mihaylova, 2002, A comparison of decision making criteria and optimization methods for active robotic sensing, 316
Jiang, 2020, Path planning for asteroid hopping rovers with pre-trained deep reinforcement learning architectures, Acta Astronaut., 171, 265, 10.1016/j.actaastro.2020.03.007
Géron, 2017
Riedmiller, 1993, A direct adaptive method for faster backpropagation learning: the rprop algorithm, 586