Deep Recurrent Neural Networks for Hyperspectral Image Classification

IEEE Transactions on Geoscience and Remote Sensing - Tập 55 Số 7 - Trang 3639-3655 - 2017
Lichao Mou1,2, Pedram Ghamisi1,2, Xiao Xiang Zhu1,2
1German Aerospace Center, Remote Sensing Technology Institute, Wessling, Germany
2Signal Processing in Earth Observation, Technical University of Munich, Munich, Germany

Tóm tắt

Từ khóa


Tài liệu tham khảo

graves, 2014, Towards end-to-end speech recognition with recurrent neural networks, Proc Int Conf Mach Learn, 1764

bahdanau, 2014, Neural machine translation by jointly learning to align and translate

10.1109/JSTARS.2014.2329330

10.1109/TGRS.2016.2584107

10.1109/IGARSS.2015.7326945

10.1155/2015/258619

10.1109/TASLP.2015.2400218

10.3390/rs8060506

10.1080/095400999116340

10.1162/neco.1989.1.2.270

10.3390/rs71114680

10.1109/ICASSP.2013.6638947

10.1109/LGRS.2015.2513443

10.1109/TCYB.2014.2361489

10.1109/TCYB.2014.2362959

10.1016/j.rse.2012.11.023

10.1016/S0034-4257(97)00045-X

10.1016/j.rse.2012.08.029

10.1109/TGRS.2004.842481

ho, 1998, The random subspace method for constructing decision forests, IEEE Trans Pattern Anal Mach Intell, 20, 832, 10.1109/34.709601

10.1109/TGRS.2004.831865

10.1109/TPAMI.2015.2437384

10.1109/JSTARS.2015.2470129

10.1109/TNNLS.2014.2359471

10.1109/TGRS.2015.2514161

10.1109/TGRS.2013.2266673

10.1109/TPAMI.2012.231

10.1109/TGRS.2013.2292544

10.1109/TGRS.2012.2195727

10.1109/JSTARS.2015.2477431

10.1109/TGRS.2014.2358934

10.1109/TGRS.2012.2186305

benediktsson, 2015, Spectral-Spatial Classification of Hyperspectral Remote Sensing Images

10.1109/CVPR.2015.7298878

10.1109/IGARSS.2000.861712

gal, 2016, A theoretically grounded application of dropout in recurrent neural networks

pascanu, 2013, On the difficulty of training recurrent neural networks, Proc Int Conf Mach Learn, 1310

10.1109/TGRS.2008.922034

im, 2016, Generating images with recurrent adversarial networks

10.1109/TGRS.2012.2205263

graves, 2013, Generating Sequences with Recurrent Neural Networks

10.1109/TIT.1968.1054102

10.1162/neco.1997.9.8.1735

ghamisi, 2015, Spectral and spatial classification of hyperspectral data

10.3115/v1/W14-4012

10.1109/ICCV.2015.494

10.1016/j.neunet.2005.06.042

krizhevsky, 2012, ImageNet classification with deep convolutional neural networks, Proc Adv Neural Inf Process Syst, 1097