Deep Pyramidal Residual Networks for Spectral–Spatial Hyperspectral Image Classification

IEEE Transactions on Geoscience and Remote Sensing - Tập 57 Số 2 - Trang 740-754 - 2019
Mercedes E. Paoletti1, Juan M. Haut1, Rubén Fernández-Beltran2, Javier Plaza1, Antonio Plaza1, Filiberto Pla2
1Hyperspectral Computing Laboratory, Escuela Politécnica, University of Extremadura, Cáceres, Spain
2Institute of New Imaging Technologies, University Jaume I, Castellón, Spain

Tóm tắt

Từ khóa


Tài liệu tham khảo

10.1109/TGRS.2017.2675902

10.1109/ICIP.2014.7026039

10.1109/TGRS.2013.2296031

10.1109/TGRS.2017.2765364

10.1109/TGRS.2018.2838665

10.1109/TGRS.2017.2747862

10.1080/22797254.2017.1274566

goodfellow, 2016, Deep Learning

10.1038/nature14539

10.1109/JSTARS.2015.2498664

10.1109/36.3001

xu, 2015, Empirical evaluation of rectified activations in convolutional network

nair, 2010, Rectified linear units improve restricted Boltzmann machines, Proc 27th Int Conf Mach Learn (ICML), 807

10.1016/S0034-4257(98)00064-9

10.1109/TGRS.2012.2205263

kunkel, 1988, ROSIS (Reflective Optics System Imaging Spectrometer)—A candidate instrument for polar platform missions, Proc SPIE Optoelectron Technol Remote Sens Space, 868, 134

10.1109/LGRS.2018.2799628

10.1109/TGRS.2010.2041784

10.1109/TSMCB.2011.2168604

10.1109/TGRS.2017.2730583

huang, 2005, Extreme learning machine with randomly assigned RBF kernels, Int J Inf Technol, 11, 16

10.1109/MGRS.2013.2244672

10.1109/79.974718

10.1109/TGRS.2016.2593463

10.1109/TGRS.2017.2686842

10.1109/JSTARS.2017.2658948

10.1117/12.837953

10.1109/TGRS.2007.904951

10.1109/TGRS.2016.2636850

10.1109/LGRS.2017.2753237

10.1016/j.isprsjprs.2017.11.021

srivastava, 2015, Training very deep networks, Advances in Neural IInformation Processing Systems, 2377

10.1109/TGRS.2011.2153861

10.1109/TGRS.2017.2748160

10.1109/IGARSS.2017.8127330

yamada, 2016, Deep pyramidal residual networks with separated stochastic depth

10.1109/CVPR.2017.668

veit, 2016, Residual networks behave like ensembles of relatively shallow networks, Advances in Neural IInformation Processing Systems, 550

10.1109/CVPR.2017.634

10.1109/CVPR.2016.90

10.1109/TGRS.2017.2716187

10.1007/978-0-387-36699-9

10.1109/LGRS.2014.2309695

10.1109/MSP.2013.2279179

10.1109/TGRS.2005.846154

10.1109/IGARSS.2015.7325813

haut, 2017, Cloud implementation of logistic regression for hyperspectral image classification, Proc 17th Int Conf Comput Math Methods Sci Eng (CMMSE), 3, 1063

10.1109/TGRS.2009.2023983

10.1109/TGRS.2004.842481

10.1109/JSTARS.2014.2329330

donoho, 2000, High-dimensional data analysis: The curses and blessings of dimensionality, AMS Math Challenges Lecture, 1, 32

10.1109/CVPRW.2017.35

10.1109/JSTARS.2016.2577339

10.1109/JPROC.2012.2197589

10.3390/rs1030318

10.1007/s11227-016-1896-3

10.1109/MGRS.2016.2616418

10.3390/rs9010067

10.1109/TCI.2017.2669731

10.1080/2150704X.2017.1280200

10.1109/IGARSS.2016.7730324

10.1109/TGRS.2017.2755542

shao, 2016, Spectral–spatial feature extraction for hyperspectral image classification: A dimension reduction and deep learning approach, IEEE Trans Geosci Remote Sens, 54, 4544, 10.1109/TGRS.2016.2543748

10.1109/TGRS.2016.2584107

10.1109/JSTARS.2016.2517204

10.1109/TGRS.2016.2616355

10.1109/IGARSS.2016.7730321