Deep Neural Networks Motivated by Partial Differential Equations
Tóm tắt
Từ khóa
Tài liệu tham khảo
Ambrosio, L., Tortorelli, V.M.: Approximation of functionals depending on jumps by elliptic functionals via gamma-convergence. Commun. Pure Appl. Math. 43(8), 999–1036 (1990)
Ascher, U.: Numerical Methods for Evolutionary Differential Equations. SIAM, Philadelphia (2010)
Ascher, U., Mattheij, R., Russell, R.: Numerical Solution of Boundary Value Problems for Ordinary Differential Equations. SIAM, Philadelphia (1995)
Bengio, Y., et al.: Learning deep architectures for AI. Found. Trends Mach. Learn. 2(1), 1–127 (2009)
Bengio, Y., Simard, P., Frasconi, P.: Learning long-term dependencies with gradient descent is difficult. IEEE Trans. Neural Netw. 5(2), 157–166 (1994)
Biegler, L.T., Ghattas, O., Heinkenschloss, M., Keyes, D., van Bloemen Waanders, B.: Real-Time PDE-Constrained Optimization. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2007)
Borzì, A., Schulz, V.: Computational Optimization of Systems Governed by Partial Differential Equations, vol. 8. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2012)
Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Trans. Image Process. 10(2), 266–277 (2001)
Chang, B., Meng, L., Haber, E., Ruthotto, L., Begert, D., Holtham, E.: Reversible architectures for arbitrarily deep residual neural networks. In: AAAI Conference on AI (2018)
Chaudhari, P., Oberman, A., Osher, S., Soatto, S., Carlier, G.: Deep relaxation: partial differential equations for optimizing deep neural networks. arXiv preprint arXiv:1704.04932 , (2017)
Chen, T. Q., Rubanova, Y., Bettencourt, J., Duvenaud, D.: Neural ordinary differential equations. arXiv preprint arXiv:1806.07366 (2018)
Chen, Y., Pock, T.: Trainable nonlinear reaction diffusion: a flexible framework for fast and effective image restoration. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1256–1272 (2017)
Cisse, M., Bojanowski, P., Grave, E., Dauphin, Y., Usunier, N.: Parseval networks: improving robustness to adversarial examples. In: Proceedings of the 34th International Conference on Machine Learning, Vol. 70, pp. 854–863. JMLR. org, (2017)
Coates, A., Ng, A., Lee, H.: An analysis of single-layer networks in unsupervised feature learning. In: Proceedings of the 14th International Conference on Artificial Intelligence and Statistics, pp. 215–223 (2011)
Combettes, P. L., Pesquet, J.-C.: Deep neural network structures solving variational inequalities. arXiv preprint arXiv:1808.07526 (2018)
Combettes, P. L., Pesquet, J.-C.: Lipschitz certificates for neural network structures driven by averaged activation operators. arXiv preprint arXiv:1903.01014v2 (2019)
Dundar, A., Jin, J., Culurciello, E.: Convolutional clustering for unsupervised learning. In: ICLR (2015)
Gomez, A. N., Ren, M., Urtasun, R., Grosse, R. B.: The reversible residual network: backpropagation without storing activations. In: Advances in Neural Information Processing Systems, pp. 2211–2221 (2017)
Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)
Goodfellow, I. J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples. arXiv preprint arXiv:1412.6572 (2014)
Haber, E., Ruthotto, L.: Stable architectures for deep neural networks. Inverse Probl. 34, 014004 (2017)
Haber, E., Ruthotto, L., Holtham, E.: Learning across scales—a multiscale method for convolution neural networks. In: AAAI Conference on AI, pp. 1–8, arXiv:1703.02009 (2017)
Hansen, P.C., Nagy, J.G., O’Leary, D.P.: Deblurring Images: Matrices, Spectra and Filtering. SIAM, Philadelphia (2006)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: 36th International Conference on Machine Learning, pp. 630–645 (2016)
Hernández-Lobato, J.M., Gelbart, M.A., Adams, R.P., Hoffman, M.W., Ghahramani, Z.: A general framework for constrained bayesian optimization using information-based search. J. Mach. Learn. Res. 17, 2–51 (2016)
Herzog, R., Kunisch, K.: Algorithms for PDE-constrained optimization. GAMM-Mitteilungen 33(2), 163–176 (2010)
Hinton, G., Deng, L., Yu, D., Dahl, G.E., Mohamed, A.-R., Jaitly, N., Senior, A., Vanhoucke, V., Nguyen, P., Sainath, T.N., et al.: Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups. IEEE Signal Process. Mag. 29(6), 82–97 (2012)
Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: 32nd International Conference on Machine Learning, pp. 448–456 (2015)
Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images. Technical report, University of Toronto (2009)
Krizhevsky, A., Sutskever, I., Hinton, G.: Imagenet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 61, 1097–1105 (2012)
LeCun, Y., Bengio, Y.: Convolutional networks for images, speech, and time series. Handb. Brain Theory Neural Netw. 3361, 255–258 (1995)
LeCun, Y., Kavukcuoglu, K., Farabet, C.: Convolutional networks and applications in vision. In: IEEE International Symposium on Circuits and Systems: Nano-Bio Circuit Fabrics and Systems, pp. 253–256 (2010)
Li, Q., Chen, L., Tai, C., Weinan, E.: Maximum principle based algorithms for deep learning. J. Mach. Learn. Res. 18(1), 5998–6026 (2017)
Modersitzki, J.: FAIR: Flexible Algorithms for Image Registration. Fundamentals of Algorithms. SIAM, Philadelphia (2009)
Moosavi-Dezfooli, S. M., Fawzi, A., F, O.: arXiv, and 2017. Universal adversarial perturbations. openaccess.thecvf.com
Mumford, D., Shah, J.: Optimal approximations by piecewise smooth functions and associated variational-problems. Commun. Pure Appl. Math. 42(5), 577–685 (1989)
Pei, K., Cao, Y., Yang, J., Jana, S.: Deepxplore: automated whitebox testing of deep learning systems. In: 26th Symposium on Oper. Sys. Princ., pp. 1–18. ACM Press, New York (2017)
Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12(7), 629–639 (1990)
Raina, R., Madhavan, A., Ng, A. Y.: Large-scale deep unsupervised learning using graphics processors. In: 26th Annual International Conference, pp. 873–880. ACM, New York (2009)
Rogers, C., Moodie, T.: Wave Phenomena: Modern Theory and Applications. Mathematics Studies. Elsevier Science, North-Holland (1984)
Rosenblatt, F.: The perceptron: a probabilistic model for information storage and organization in the brain. Psychol. Rev. 65(6), 386–408 (1958)
Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Phys. D 60(1–4), 259–268 (1992)
Scherzer, O., Grasmair, M., Grossauer, H., Haltmeier, M., Lenzen, F.: Variational Methods in Imaging. Springer, New York (2009)
Torralba, A., Fergus, R., Freeman, W.T.: 80 million tiny images: a large data set for nonparametric object and scene recognition. IEEE Trans. Pattern Anal. Mach. Intell. 30(11), 1958–1970 (2008)
Weickert, J.: Anisotropic diffusion in image processing. Stuttgart (2009)
Weinan, E.: A proposal on machine learning via dynamical systems. Commun. Math. Stat. 5(1), 1–11 (2017)
Yang, S., Luo, P., Loy, C. C., Shum, W. K., Tang, X.: Deep visual representation learning with target coding. In: AAAI Conference on AI, pp. 3848–3854 (2015)