Deep Learning in Mobile and Wireless Networking: A Survey

Institute of Electrical and Electronics Engineers (IEEE) - Tập 21 Số 3 - Trang 2224-2287 - 2019
Chaoyun Zhang1, Paul Patras1, Hamed Haddadi2
1Institute for Computing Systems Architecture, School of Informatics, University of Edinburgh, Edinburgh, U.K.
2Dyson School of Design Engineering, Imperial College London, London, U.K.

Tóm tắt

Từ khóa


Tài liệu tham khảo

10.1109/JIOT.2016.2558659

10.1109/GLOCOM.2015.7417517

10.1145/3097983.3098086

10.1109/ICC.2018.8422896

10.1145/3081333.3081336

10.1145/3092832

brock, 2018, Large scale GAN training for high fidelity natural image synthesis, arXiv preprint arXiv 1809 11096

10.1145/3086467.3086476

10.1109/ICC.2018.8422895

hessel, 2017, Rainbow: Combining improvements in deep reinforcement learning, Proc AAAI Conf Artif Intell (AAAI), 3215

silver, 2016, Mastering the game of GO with deep neural networks and tree search, Nature, 529, 484, 10.1038/nature16961

10.1145/1015330.1015415

schulman, 2017, Proximal policy optimization algorithms, arXiv preprint arXiv 1707 08386

klambauer, 2017, Self-normalizing neural networks, Proc Adv Neural Inf Process Syst, 971

glorot, 2011, Deep sparse rectifier neural networks, Proc 14th Int Conf Artificial Intell, 315

10.1162/089976602760128018

ioffe, 2015, Batch normalization: Accelerating deep network training by reducing internal covariate shift, Proc Int Conf Mach Learn, 448

xingjian, 2015, Convolutional LSTM network: A machine learning approach for precipitation nowcasting, Proc Adv Neural Inf Process Syst, 802

qi, 2018, Loss-sensitive generative adversarial networks on Lipschitz densities, IEEE Trans Pattern Anal Mach Intell, 1

10.1109/INFOCOM.2018.8486226

10.1145/3123024.3123095

10.1145/2971648.2971731

10.1109/JSEN.2017.2737825

10.1145/2964284.2967249

10.1145/2957265.2962662

10.1145/3054977.3057296

dauphin, 2013, Stochastic ratio matching of RBMs for sparse high-dimensional inputs, Proc Adv Neural Inf Process Syst, 1340

10.1109/ICCV.2017.355

10.1109/CISP.2014.7003950

ruan, 2016, Speech is 3x faster than typing for English and mandarin text entry on mobile devices, arXiv preprint arXiv 1608 07323

10.1109/ASRU.2015.7404828

10.1109/ICASSP.2016.7472823

10.1007/978-3-319-45823-6_67

10.1109/ICASSP.2016.7472820

10.1145/2689746.2689747

10.1561/2200000006

10.1109/ASRU.2011.6163900

10.1145/3161174

10.1145/2968219.2971461

10.1109/TC.2017.2709742

10.1109/WCNC.2017.7925567

10.2307/2685208

10.1109/INFOCOM.2018.8485905

2017, Deep Learning for Siri’s Voice On-Device Deep Mixture Density Networks for Hybrid Unit Selection Synthesis

10.1186/s13640-017-0167-4

10.1145/3131898

10.1007/s10586-017-1086-y

ouyang, 2016, DeepSpace: An online deep learning framework for mobile big data to understand human mobility patterns, arXiv preprint arXiv 1610 09756

zhang, 2017, Deep spatio-temporal residual networks for citywide crowd flows prediction, Proc Nat Conf Artif Intell (AAAI), 1655

song, 2016, DeepTransport: Prediction and simulation of human mobility and transportation mode at a citywide level, Proc Int Joint Conf Artif Intell, 2618

10.1515/eletel-2017-0006

subramanian, 2014, Implementation of artificial neural network for mobile movement prediction, Indian J of Sci and Technol, 7, 858, 10.17485/ijst/2014/v7i6.12

10.1109/JPROC.2017.2761740

10.1145/3241737

akopyan, 2016, Design and tool flow of IBM’s TrueNorth: An ultra-low power programmable neurosynaptic chip with 1 million neurons, Proc ACM Int Symp Phys Design, 59, 10.1145/2872334.2878629

bang, 2017, 14.7 A $288~\mu\text{W}$ programmable deep-learning processor with 270KB on-chip weight storage using non-uniform memory hierarchy for mobile intelligence, Proc IEEE Int Conf Solid-State Circuits (ISSCC), 250

10.1109/COMST.2018.2814571

10.1016/j.future.2018.04.057

10.1145/3038912.3052577

10.1145/2677046.2677052

10.1145/3089801.3089802

zhou, 2018, Stable gradient descent, Proc Conf Uncertainty Artif Intell, 1

wen, 2017, TernGrad: Ternary gradients to reduce communication in distributed deep learning, Proc Adv Neural Inf Process Syst, 1

10.1007/978-3-319-05029-4_7

10.23919/DATE.2017.7927211

10.1145/3230543.3230579

sutskever, 2014, Sequence to sequence learning with neural networks, Proc Adv Neural Inf Process Syst, 3104

10.1049/cp:19991218

10.1109/CVPR.2017.243

10.1109/TPAMI.2012.59

10.1109/CVPR.2016.90

kingma, 2014, Auto-encoding variational Bayes, Proc of the Int Conf on Learning Representations (ICLR)

vincent, 2010, Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion, J Mach Learn Res, 11, 3371

10.1145/1553374.1553453

10.1162/neco.2006.18.7.1527

oskouei, 2016, CNNdroid: GPU-accelerated execution of trained deep convolutional neural networks on Android, Proc ACM Multimedia Conf, 1201, 10.1145/2964284.2973801

cortes, 2017, AdaNet: Adaptive structural learning of artificial neural networks, Proc Int Conf Mach Learn (ICML), 874

10.1109/ASRU.2013.6707742

johnson, 2016, Supervised and semi-supervised text categorization using LSTM for region embeddings, Proc Int Conf Mach Learn (ICML), 526

goodfellow, 2016, NIPS 2016 tutorial: Generative adversarial networks, arXiv preprint arXiv 1701 00295

10.1109/CVPR.2017.200

10.1109/ICCV.2017.89

zhu, 2018, Deformable ConvNets v2: More deformable, better results, arXiv preprint arXiv 1811 11168

10.1109/72.279181

10.1109/ICIP.2016.7532372

10.1109/iThings-GreenCom-CPSCom-SmartData.2016.173

10.1007/s11263-015-0816-y

cho, 2017, MEC: Memory-efficient convolution for deep neural network, Proc Int Conf Mach Learn (ICML), 815

10.1145/3089801.3089806

10.1109/CVPR.2016.521

10.1145/2994551.2994564

10.1109/IPSN.2016.7460664

10.1145/3081333.3089331

10.1109/SiPS.2016.31

rallapalli, 0, Are very deep neural networks feasible on mobile devices, IEEE Trans Circuits Syst Video Technol

10.1109/RTCSA.2017.8046337

10.21437/Interspeech.2016-522

10.1109/PDP.2017.98

10.1145/3274783.3274840

li, 2018, DeepRebirth: Accelerating deep neural network execution on mobile devices, Proc Nat Conf Artif Intell (AAAI), 2322

10.1109/ICDCS.2017.226

omidshafiei, 2017, Deep decentralized multi-task multi-agent reinforcement learning under partial observability, Proc Int Conf Mach Learn (ICML), 2681

10.1145/3241539.3241559

10.1145/3241539.3241563

10.1145/3210240.3210337

chen, 2018, TVM: An automated end-to-end optimizing compiler for deep learning, Proc of USENIX Symp on Operating Systems Design and Implementation (OSDI), 578

recht, 2011, Hogwild: A lock-free approach to parallelizing stochastic gradient descent, Proc Adv Neural Inf Process Syst, 693

10.1109/CVPR.2017.19

zhang, 2016, Asynchronous distributed semi-stochastic gradient optimization, Proc Nat Conf Artif Intell (AAAI), 2323

goyal, 2017, Accurate, large minibatch SGD: Training ImageNet in 1 hour, arXiv preprint arXiv 1706 02677

qi, 2017, PointNet++: Deep hierarchical feature learning on point sets in a metric space, Proc Adv Neural Inf Process Syst, 5099

roux, 2004, Geometric Data Analysis From Correspondence Analysis to Structured Data Analysis

10.1007/s10586-017-1117-8

10.1109/CISDA.2009.5356528

10.1109/TWC.2014.022014.130840

10.1109/CSCI.2016.0043

10.1002/sec.1204

10.1109/CVPR.2005.202

10.1145/3017427

aminanto, 2016, Detecting impersonation attack in WiFi networks using deep learning approach, Proc Int Workshop Inf Security Appl, 136

10.1145/2501654.2501659

feng, 2016, Anomaly detection of spectrum in wireless communication via deep autoencoder, Proc Int Conf Comput Sci Appl, 259

10.1109/GLOCOMW.2018.8644250

10.2514/6.2016-5726

gaw?owicz, 2018, ns3-gym: Extending OpenAI Gym for networking research, arXiv preprint arXiv 1810 06008

10.1145/3098593.3098596

10.1109/IJCNN.2017.7966342

gu, 2016, Continuous deep Q-learning with model-based acceleration, Proc Int Conf Mach Learn, 2829

10.1109/ICIP.2018.8451093

10.1109/LCOMM.2018.2815018

10.1109/CVPR.2017.211

hitaj, 2017, PassGAN: A deep learning approach for password guessing, arXiv preprint arXiv 1709 00440

pham, 2018, Deep reinforcement learning based QoS-aware routing in knowledge-defined networking, Proc Qshine EAI Int Conf Heterogeneous Netw Qual Rel Security Robustness, 1

10.1109/CVPR.2017.624

10.1109/JSAC.2018.2864373

10.2352/ISSN.2470-1173.2017.19.AVM-023

10.1109/MCOM.2017.1700246

2019, Alphastar Mastering the real-time strategy game StarCraft II

10.1126/science.aam6960

10.1109/JSYST.2018.2870483

10.1177/0278364917710318

10.1109/TNNLS.2014.2360724

10.1007/s10462-012-9383-6

10.1109/4235.585893

10.1109/MSP.2017.2765695

10.1109/MPRV.2017.2940968

10.1109/MC.2017.3641648

10.1109/TrustCom.2016.0070

10.1109/ICDCS.2018.00139

10.1109/WIW.2016.040

iandola, 2017, SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size, Proc Int Conf Learn Represent

howard, 2017, MobileNets: Efficient convolutional neural networks for mobile vision applications, arXiv preprint arXiv 1704 04861

10.1109/CVPR.2018.00716

10.1109/ICC.2018.8422832

10.1109/MMUL.2016.21

10.1145/3063593

10.1109/ICC.2018.8422830

gwon, 2014, Inferring origin flow patterns in Wi-Fi with deep learning, Proc 11th IEEE Int Conf Auton Comput (ICAC)), 73

10.1145/3089801.3089804

10.1145/2740070.2631434

10.1109/WCNC.2017.7925498

10.1109/TST.2016.7399288

10.12783/ijcsa.2015.0401.02

10.1016/j.future.2017.08.043

10.1109/INFOCOM.2017.8057090

10.1016/j.neucom.2015.04.101

10.1145/3209582.3209606

10.3390/s17091967

10.1145/3143361.3143393

10.1109/TII.2017.2769106

10.1109/PIMRC.2017.8292737

10.1016/j.procs.2017.08.216

10.1109/LCOMM.2018.2841832

wang, 2015, The applications of deep learning on traffic identification, Proc BlackHat USA, 21

10.1109/ICC.2018.8422221

yin, 0, Deep generative models of urban mobility, IEEE Trans Intell Transp Syst

10.1109/BigDataCongress.2017.10

felbo, 2016, Using deep learning to predict demographics from mobile phone metadata, Proc Int Conf Learni Represent Workshop Track

10.1109/ICDE.2016.7498348

10.1109/ICOIN.2017.7899588

lotfollahi, 2017, Deep packet: A novel approach for encrypted traffic classification using deep learning, arXiv preprint arXiv 1709 04396

10.1109/ISI.2017.8004872

dean, 2012, Large scale distributed deep networks, Proc Adv Neural Inf Process Syst, 1223

sutskever, 2013, On the importance of initialization and momentum in deep learning, Proc Int Conf Mach Learn (ICML), 28, 1139

2017, Core ml Integrate machine learning models into your app

2017, Huawei Announces the Kirin 970&#x2013;New Flagship SoC With AI Capabilities

kraska, 2013, $MLbase$ : A distributed machine-learning system, Proc CIDR, 1, 1

kingma, 2015, Adam: A method for stochastic optimization, Proc of the Int Conf on Learning Representations (ICLR), 1

chilimbi, 2014, Project ADAM: Building an efficient and scalable deep learning training system, Proc of the 2nd USENIX Symp on Operating Systems Design and Implementation (OSDI), 14, 571

10.1145/3097983.3098035

mirhoseini, 2017, Device placement optimization with reinforcement learning, Proc Int Conf Mach Learn, 1

10.1145/2901318.2901323

10.1126/science.aat8084

10.1109/JIOT.2018.2832071

10.1109/TNSE.2018.2848960

10.1145/3041021.3054239

10.1109/ICC.2018.8422106

10.1145/2897073.2897132

10.1145/3090082

10.1109/MNET.2018.1800127

10.1109/MNET.2018.1800078

10.1145/2938559.2948831

10.1109/MNET.2018.1800109

moritz, 2018, Ray: A distributed framework for emerging AI applications, Proc of USENIX Symp on Operating Systems Design and Implementation (OSDI), 561

10.1109/TBDATA.2015.2472014

10.1145/3123266.3129391

10.1145/3089801.3089805

paszke, 2017, On Automatic Differentiation

chen, 2015, MXNet: A flexible and efficient machine learning library for heterogeneous distributed systems, arXiv preprint arXiv 1512 00327

ruder, 2016, An overview of gradient descent optimization algorithms, arXiv preprint arXiv 1609 09861

zeiler, 2012, ADADELTA: An adaptive learning rate method, arXiv preprint arXiv 1212 5701

dozat, 2016, Incorporating Nesterov momentum into Adam, Proc Workshop Track (ICLR), 1

andrychowicz, 2016, Learning to learn by gradient descent by gradient descent, Proc Adv Neural Inf Process Syst, 3981

10.1109/MWC.2015.7306536

10.1109/CVPR.2015.7298594

2017, Cisco Visual Networking Index Forecast and Methodology 2016&#x2013;2021

sathyanarayana, 2016, Sleep quality prediction from wearable data using deep learning, JMIR Mhealth Uhealth, 4

10.1109/CYBConf.2017.7985800

10.1109/ICAC.2017.41

stamate, 2017, Deep learning Parkinson&#x2019;s from smartphone data, Proc IEEE Int Conf Pervasive Comput Commun (PerCom), 31

kim, 2016, A deep semantic mobile application for thyroid cytopathology, Proc Med Imag PACS Imag Informat Next Gener Innov, 9789

10.1109/ICPR.2016.7900181

10.1109/SEC.2016.38

10.1109/GLOCOM.2017.8255027

10.1145/3097983.3098201

10.1145/3063592

10.1109/UIC-ATC.2017.8397411

wu, 2018, Beyond sparsity: Tree regularization of deep models for interpretability, Proc AAAI Conf Artif Intell (AAAI), 1670

10.1109/CVPR.2017.354

10.1145/3190619.3190637

behzadan, 2017, Vulnerability of deep reinforcement learning to policy induction attacks, Proc Mach Learning Data Min Pattern Recognition, 262, 10.1007/978-3-319-62416-7_19

10.1109/CVPR.2015.7298640

10.1109/ICNP.2017.8117559

kipf, 2017, Semi-supervised classification with graph convolutional networks, Proc of the Int Conf on Learning Representations (ICLR), 1

10.1007/978-3-030-01246-5_2

10.1016/j.neucom.2016.02.055

perez, 2017, The effectiveness of data augmentation in image classification using deep learning, arXiv preprint arXiv 1712 04621

10.1145/2986035.2986044

10.1109/CIVEMSA.2015.7158594

10.4108/icst.mobicase.2014.257786

almaslukh, 2017, An effective deep autoencoder approach for online smartphone-based human activity recognition, Int J Comput Sci Netw Security, 17, 160

10.1145/3013971.3014025

10.3390/s17091951

10.1109/PERCOMW.2016.7457169

10.1145/2994551.2994569

hsieh, 2017, Gaia: Geo-distributed machine learning approaching LAN speeds, Proc 1st USENIX Symp Netw Syst Design Implement (NSDI '04), 629

10.1145/2984511.2984565

xiao, 2017, Tux2: Distributed graph computation for machine learning, Proc 1st USENIX Symp Netw Syst Design Implement (NSDI '04), 669

10.1109/IJCNN.2016.7727563

paolini, 2017, Mastering Analytics How to Benefit From Big Data and Network Complexity An Analyst Report

10.1109/CIT/IUCC/DASC/PICOM.2015.318

socher, 2012, Deep learning for NLP (without magic), Proc Tuts Abstracts ACL, 5

2017, IEEE Network Exploring Deep Learning for Efficient and Reliable Mobile Sensing

abadi, 2016, TensorFlow: A system for large-scale machine learning, Proc of the 2nd USENIX Symp on Operating Systems Design and Implementation (OSDI), 16, 265

10.1109/MNET.2017.1700200

chetlur, 2014, cuDNN: Efficient primitives for deep learning, arXiv preprint arXiv 1410 0759

10.1109/MNET.2016.7474340

goodfellow, 2016, Deep Learning

2016, Theano: A Python framework for fast computation of mathematical expressions, arXiv e prints abs/1605 02688

mnih, 2015, Human-level control through deep reinforcement learning, Nature, 518, 529, 10.1038/nature14236

10.1007/978-3-319-47075-7_52

10.3390/s16010115

10.1145/1365490.1365500

10.1145/3079856.3080246

10.1145/2647868.2654889

collobert, 2011, Torch7: A MATLAB-like environment for machine learning, NIPS Workshop BigLearn, 1

10.1109/CVPRW.2014.106

2017, NCNN&#x2014;A High-Performance Neural Network Inference Framework Optimized for the Mobile Platform

10.1109/CHASE.2016.14

10.1109/HealthCom.2015.7454554

10.2991/icaita-16.2016.24

10.1109/SMC.2015.263

10.1109/IJCNN.2016.7727224

10.1109/IPIN.2016.7743581

10.1109/INFOCOM.2018.8486327

10.1109/ICC.2018.8422775

10.1109/CVPR.2016.575

10.1109/ICC.2018.8422824

vinyals, 2016, Matching networks for one shot learning, Proc Adv Neural Inf Process Syst, 3630

mismar, 2017, Deep reinforcement learning for improving downlink mmWave communication performance, arXiv preprint arXiv 1707 00408

palatucci, 2009, Zero-shot learning with semantic output codes, Proc Adv Neural Inf Process Syst, 1410

10.1109/TVT.2017.2751641

10.1109/TPAMI.2006.79

10.1109/ICC.2017.7996332

ba?tu?, 2015, A transfer learning approach for cache-enabled wireless networks, Proc Int Symp Model Optim Mobile Ad-Hoc Wireless Netw (WiOpt), 161

10.1145/2938559.2938592

10.1007/978-3-319-62410-5_15

tessler, 2017, A deep hierarchical approach to lifelong learning in minecraft, Proc Nat Conf Artif Intell (AAAI), 1553

10.1109/COMST.2015.2494502

10.1016/j.phycom.2015.10.006

10.1145/3219819.3220106

10.1109/JSAC.2014.2328098

10.1145/3143361.3143369

10.1109/COMST.2016.2610963

barlacchi, 2015, A multi-source dataset of urban life in the city of Milan and the Province of Trentino, Data Science Journal, 2

10.1145/3285029

oh, 2017, Zero-shot task generalization with multi-task deep reinforcement learning, Proc Int Conf Mach Learn (ICML), 2661

10.1109/CSE-EUC.2017.215

10.1109/ICC.2017.7996587

10.1145/2815675.2815680

hordri, 2017, A systematic literature review on features of deep learning in big data analytics, Int J Adv Soft Comput Appl, 9, 32

10.1109/SURV.2012.100412.00017

10.1109/JSEN.2017.2703885

10.1109/MNET.2017.1500295NM

10.1145/3274783.3274836

10.1109/SURV.2013.103013.00206

10.1109/JSEN.2016.2550599

10.1109/COMST.2014.2320099

10.1109/LWC.2016.2595576

bonawitz, 2019, Towards federated learning at scale: System design, arXiv preprint arXiv 1902 05023

10.1109/ACCESS.2017.2723360

mcmahan, 2017, Federated learning Collaborative machine learning without centralized training data

10.1007/s11277-017-4934-4

10.2200/S00737ED1V01Y201610AIM033

10.1109/TETC.2017.2671847

fumo, 2017, Joint spatial and temporal classification of mobile traffic demands, Proc IEEE Conf Comput Commun, 1

10.1109/TIE.2017.2764861

mcmahan, 2017, Communication-efficient learning of deep networks from decentralized data, Proc Int Conf Artif Intell Statist, 54, 1273

10.1109/NCA.2017.8171350

10.1109/ICDM.2016.0028

10.1016/j.asoc.2018.01.004

10.1145/3133956.3133982

10.1016/j.comnet.2004.09.004

10.1145/1067170.1067193

10.1109/ICCNC.2016.7440625

ho, 2016, Generative adversarial imitation learning, Proc Adv Neural Inf Process Syst, 4565

ferreira, 2018, Multiobjective reinforcement learning for cognitive satellite communications using deep neural network ensembles, IEEE J Sel Areas Commun, 36, 1030, 10.1109/JSAC.2018.2832820

10.1080/10798587.2017.1329245

10.1109/TSP.2011.2147784

schaul, 2016, Prioritized experience replay, Proc Int Conf Learn Represent

10.1109/COMST.2016.2637663

10.1109/ACCESS.2014.2325029

10.1145/2933232

10.1145/3054912

10.1109/ICCCN.2012.6289200

10.1186/s40537-014-0007-7

lecun, 2015, Deep learning, Nature, 521, 436, 10.1038/nature14539

10.1016/j.inffus.2018.09.013

lee, 2016, Dual-memory deep learning architectures for lifelong learning of everyday human behaviors, Proc Int Joint Conf Artif Intell, 1669

heydari, 2017, Reduce energy consumption and send secure data wireless multimedia sensor networks using a combination of techniques for multi-layer watermark and deep learning, Int J Comput Sci Netw Security, 17, 98

graves, 2016, Hybrid computing using a neural network with dynamic external memory, Nature, 538, 471, 10.1038/nature20101

10.1016/j.neucom.2016.12.038

10.1016/j.neunet.2017.09.001

10.1016/j.neunet.2014.09.003

10.1017/atsip.2013.9

10.1007/s10489-016-0761-7

10.1561/2000000039

10.1504/IJSNET.2017.084207

10.1109/MSP.2017.2743240

10.1155/2015/157453

10.1145/3234150

10.1109/ICC.2018.8422402

10.1080/02564602.2016.1141077

10.1145/3098822.3098843

10.3390/bdcc1010001

10.1587/transcom.2015EBP3358

10.1109/ICCW.2018.8403659

10.1109/VTCFall.2015.7390988

10.1109/ICC.2018.8422706

10.1007/s10586-016-0667-5

oda, 2017, Performance evaluation of a deep Q-network based simulation system for actor node mobility control in wireless sensor and actor networks considering three-dimensional environment, Proc Int Conf Int Netw Collaborative Syst, 41

10.1109/WAINA.2017.67

10.3390/ijgi6050135

graves, 2014, Neural Turing machines, arXiv preprint arXiv 1410 5401

10.1145/3041658

10.1109/BigData.2016.7840811

10.1109/ICASSP.2014.6854321

vyas, 2017, A survey on human activity recognition using smartphone, Int J Adv Res Comput Sci Manag Stud, 5, 118

10.1145/3097895.3097903

10.1016/j.eswa.2016.04.032

10.1016/j.patrec.2018.02.010

10.1109/JBHI.2016.2636665

10.1093/bib/bbx044

10.1109/COMST.2017.2694140

o’shea, 2016, Deep reinforcement learning radio control and signal detection with KeRLym, a Gym RL agent, arXiv preprint arXiv 1605 09221

10.1109/MWC.2017.1600304WC

10.1109/COMST.2017.2727878

10.1109/TWC.2018.2829773

10.1109/SYSMART.2016.7894539

10.1109/GLOCOM.2017.8254101

10.1109/MNET.2014.6963801

10.1109/NOMS.2016.7503003

10.1109/JSYST.2016.2550530

10.1109/JSAC.2015.2393496

10.1109/SOFTCOM.2007.4446113

10.23919/WIOPT.2017.7959912

10.1109/TMC.2015.2404786

10.1109/CVPR.2017.16

10.1109/ICCW.2018.8403711

10.1016/j.comcom.2010.08.008

10.1109/COMST.2015.2504379

chinchali, 2018, Cellular network traffic scheduling with deep reinforcement learning, Proc Nat Conf Artif Intell (AAAI)

10.1109/TNN.2008.2005605

10.1109/ICC.2017.7997286

10.1145/3042064

10.1109/SPAWC.2017.8227766

10.1109/ICC.2018.8422586

10.1109/CCAAW.2017.8001880

10.1109/COMST.2017.2731979

10.1109/COMST.2015.2444095

10.1145/2820975.2820980

10.1109/MNET.2018.1700202

10.23919/TMA.2018.8506558

10.1109/MNET.2018.1800104

ngiam, 2011, Multimodal deep learning, Proc 28th Int Conf Mach Learn (ICML), 689

10.1109/COMST.2016.2532458

10.1109/MCOM.2015.7010527

10.1109/MNET.2016.7389830

10.1109/ACCESS.2015.2461602

10.1109/ICC.2018.8422427

10.1109/TWC.2017.2718526

10.1109/MCOM.2018.1700294

10.1109/MNET.2015.7064901

10.1109/MWC.2016.1500356WC

10.1109/MDM.2014.73

10.1109/COMST.2015.2491361

10.1007/s00500-014-1511-6

10.1109/COMST.2017.2682318

10.1145/3230543.3230551

10.1109/COMST.2017.2705720

10.1016/j.adhoc.2016.11.007

10.1109/MWC.2016.1500184WC

10.1109/MWC.2017.1700244

10.1109/ICCV.2017.200

10.1109/COMST.2017.2745201

10.1109/TSUSC.2017.2743704

usama, 2017, Unsupervised machine learning for networking: Techniques, applications and research challenges, arXiv preprint arXiv 1709 01922

10.1109/MNET.2015.7064897

10.1145/3097983.3098052

10.1109/JSAC.2016.2550338

abadi, 2017, Learning to protect communications with adversarial neural cryptography, Proc Int Conf Learn Represent

10.1109/MCOM.2017.1600951

10.1126/science.aar6404

10.1007/s11276-015-0942-z

10.1109/MAES.2018.170179

10.1109/TIFS.2017.2737968

10.1109/ICC.2018.8422743

10.1145/3123878.3131978

10.1109/ICC.2017.7996821

10.1109/ICC.2018.8422182

10.1109/ICC.2018.8422562

10.1109/COMST.2017.2736886

chen, 2017, Machine learning for wireless networks with artificial intelligence: A tutorial on neural networks, arXiv preprint arXiv 1710 02913

zhou, 2018, Intelligent wireless communications enabled by cognitive radio and machine learning, China Commun, 15, 16

luong, 2018, Applications of deep reinforcement learning in communications and networking: A survey, arXiv preprint arXiv 1810 06008

10.1109/COMST.2018.2847722

10.1109/TVT.2016.2635161

li, 2017, Deep reinforcement learning: An overview, arXiv preprint arXiv 1701 07717

10.1109/PERCOMW.2016.7457118

10.1145/2699343.2699349

10.1007/978-3-319-54042-9_57

10.1145/3092831

10.1109/ACCESS.2017.2688362

10.1109/ICC.2017.7997235

wang, 2015, DeepFi: Deep learning for indoor fingerprinting using channel state information, Proc IEEE Wireless Commun Netw Conf (WCNC), 1666

10.1016/j.jnca.2018.07.015

10.1145/3178876.3186058

mnih, 2016, Asynchronous methods for deep reinforcement learning, Proc Int Conf Mach Learn (ICML), 1928

10.1145/3191746

10.1109/JSTSP.2017.2784180

10.1109/ICC.2018.8422289

10.1109/ICC.2018.8422290

10.1109/LWC.2017.2757490

10.1109/TVT.2018.2851783

10.1155/2018/6497340

10.1109/JIOT.2017.2712560

10.1109/TCCN.2017.2758370

10.1109/ICC.2018.8422346

10.1109/GlobalSIP.2016.7905847

10.1109/ISSPIT.2016.7886039

10.1109/VTCFall.2018.8690554

10.1109/ACCESS.2018.2878681

10.1109/MITP.2017.265110829

10.1109/JIOT.2017.2714189

wang, 2017, Big data analytics for network intrusion detection: A survey, International Journal of Networks and Communications, 7, 24

10.1109/MNET.2018.1700411

10.1109/MWC.2016.1600317WC

10.1109/IJCNN.2017.7966345

10.1109/ACCESS.2015.2471178

tka?ík, 2016, Neural Turing machine for sequential learning of human mobility patterns, Proc IEEE Int Joint Conf Neural Netw (IJCNN), 2790

10.1109/COMST.2017.2707140

10.1109/WAMICON.2017.7930254

10.1109/COMST.2018.2844341

10.1109/ICASI.2018.8394504

10.1016/j.jnca.2016.04.006

10.1109/ICC.2018.8422308

10.1109/COMST.2018.2846401

10.1145/3057280

chen, 2016, Learning deep representation from big and heterogeneous data for traffic accident inference, Proc Nat Conf Artif Intell (AAAI), 338

10.1109/ACSSC.2016.7869126

10.1109/DySPAN.2017.7920754

10.1109/ACCESS.2018.2850226

10.1109/VTCFall.2018.8690987

10.1109/SPAWC.2017.8227772

jiang, 2018, DeepUrbanMomentum: An online deep-learning system for short-term urban mobility prediction, Proc Nat Conf Artif Intell (AAAI), 784

neumann, 2017, Deep channel estimation, Proc International ITG Workshop on Smart Antennas, 1

10.1016/j.neucom.2017.07.069

10.1109/IJCNN.2017.7966042

10.1109/ICC.2018.8422544

10.1109/TCCN.2018.2835460

10.1109/TSP.2017.2708040

stewart, 2017, Label-free supervision of neural networks with physics and domain knowledge, Proc Nat Conf Artif Intell (AAAI), 2576

kingma, 2014, Semi-supervised learning with deep generative models, Proc Adv Neural Inf Process Syst, 3581

10.1109/CVPR.2015.7298682

goodfellow, 2014, Generative adversarial nets, Proc Adv Neural Inf Process Syst, 2672

10.1162/neco.2008.04-07-510

10.1504/IJSNET.2017.083532

rasmussen, 2006, Gaussian Processes for Machine Learning, 1

10.1177/1550147717707896

10.1145/3055031.3055069

10.3390/s16081228

10.1117/1.OE.56.10.106103

10.1145/3130924

10.1109/ACCESS.2017.2720164

10.1109/TNSE.2018.2871165

10.1145/3131895

10.1109/CVPR.2017.576

10.1007/s11277-015-2362-x

rezende, 2016, One-shot generalization in deep generative models, Proc Int Conf Mach Learn (ICML), 1521

10.1155/2015/403242

socher, 2013, Zero-shot learning through cross-modal transfer, Proc Adv Neural Inf Process Syst, 935

10.1049/iet-wss.2013.0055

o’shea, 2017, Deep learning based MIMO communications, arXiv preprint arXiv 1707 07816

10.1109/PERCOM.2018.8444573

10.1109/ICC.2018.8422243

10.1007/978-3-319-49445-6_1

greydanus, 2017, Learning the enigma with recurrent neural networks, arXiv preprint arXiv 1708 05227

10.1145/3133956.3134012

servia-rodriguez, 2018, Personal model training under privacy constraints, Proc 3rd ACM/IEEE Int Conf Internet Things Design Implement

10.1109/MC.2018.2381113

ossia, 2017, A hybrid deep learning architecture for privacy-preserving mobile analytics, arXiv preprint arXiv 1703 01641

10.1145/2976749.2978318

garnelo, 2018, Neural processes, arXiv preprint arXiv 1807 01622

damianou, 2013, Deep Gaussian processes, Proc Artif Intell Stat, 207

10.1007/BF02459570

10.24963/ijcai.2017/497

10.3390/app8071062

arjovsky, 2017, Wasserstein generative adversarial networks, Proc Int Conf Mach Learn, 214

10.1109/ISCC.2018.8538530

10.1109/IPIN.2018.8533766

tsang, 2005, Core vector machines: Fast SVM training on very large data sets, J Mach Learn Res, 6, 363

zhengj, 2016, Mobile device based outdoor navigation with on-line learning neural network: A comparison with convolutional neural network, Proc IEEE Conf Comp Vis Pattern Recognit, 11

10.1109/WoWMoM.2016.7523569

10.1109/TVT.2016.2545523

10.1109/PIMRC.2017.8292280

rumelhart, 1986, Learning representations by back-propagating errors, Nature, 323, 533, 10.1038/323533a0

10.1145/3274895.3274909

10.1007/978-981-10-5421-1_9

lecun, 1995, Convolutional networks for images, speech, and time series, The Handbook of Brain Theory and Neural Networks, 3361

10.1109/ACCESS.2017.2749516

krizhevsky, 2012, ImageNet classification with deep convolutional neural networks, Proc Adv Neural Inf Process Syst, 1097

10.1109/ICMLA.2017.0-185

10.1145/2347736.2347755

10.1109/SAHCN.2018.8397121

10.14257/ijsia.2016.10.9.05

10.1109/ARGENCON.2016.7585247

shokri, 2015, Privacy-preserving deep learning, Proc 22nd ACM SIGSAC Conf Comput Commun Security, 1310, 10.1145/2810103.2813687

10.1007/s00521-016-2564-5

10.1145/3029806.3029823

10.1109/WCNC.2018.8376973

10.1109/FTC.2016.7821774

chen, 2017, Deep learning for secure mobile edge computing, arXiv preprint arXiv 1709 04396

10.1109/ACCESS.2018.2831240

10.1109/ICC.2018.8422168

10.1109/ICC.2018.8422442

10.1109/INFOCOM.2018.8485853

10.1145/3229607.3229610

luong, 2018, Joint transaction transmission and channel selection in cognitive radio based blockchain networks: A deep reinforcement learning approach, arXiv preprint arXiv 1810 10053

10.1109/MNET.2018.1800085

10.1109/GLOCOM.2017.8254036

10.1109/WCNC.2018.8377343

10.1109/WCNC.2018.8377044

10.1109/JIOT.2018.2846694

zhao, 2018, Deep reinforcement learning for network slicing, arXiv preprint arXiv 1805 06591