Deep Learning for Household Load Forecasting—A Novel Pooling Deep RNN

IEEE Transactions on Smart Grid - Tập 9 Số 5 - Trang 5271-5280 - 2018
Heng Shi1, Minghao Xu1, Ran Li1
1Department of Electronic and Electrical Engineering, University of Bath, Bath, U. K.

Tóm tắt

Từ khóa


Tài liệu tham khảo

10.1021/ci0342472

abadi, 2016, Tensorflow: Large-scale machine learning on heterogeneous distributed systems, arXiv preprint arXiv 1603 04467

10.1162/neco.2006.18.7.1527

10.1007/BF02478259

goodfellow, 2016, Deep Learning

busseti, 2012, Deep learning for time series modeling

2011, Electricity smart metering customer behaviour trials (CBT) findings report

pascanu, 2013, How to construct deep recurrent neural networks, arXiv preprint arXiv 1312 6026

10.1109/ICASSP.2013.6638947

10.1016/0893-6080(89)90020-8

10.1109/SustainIT.2013.6685208

10.1016/j.ijforecast.2013.07.001

10.1145/2602044.2602082

10.1016/j.ijforecast.2013.08.002

10.1109/TII.2014.2363584

10.1109/TPWRS.2010.2052638

hong, 2016, Electric Load Forecasting Fundamentals and Best Practices

10.1109/TSG.2014.2364233

hong, 2010, Cost of temperature history data uncertainties in short term electric load forecasting, Proc IEEE 11th Int Conf Probabilistic Methods Appl Power Syst (PMAPS), 212

10.1016/j.ijforecast.2014.07.001

10.1016/j.ijforecast.2015.09.006

10.1021/ci400187y

10.1109/TSG.2011.2140344

10.1038/nature16961

10.1109/TCST.2014.2361807

10.1109/TSG.2015.2493205

10.1109/TSTE.2015.2434387

liu, 2012, Real-time household load priority scheduling algorithm based on prediction of renewable source availability, IEEE Trans Consum Electron, 58, 318, 10.1109/TCE.2012.6227429

10.1029/JC090iC05p08995

10.1109/TSG.2013.2277171

2014, Demand Side Response Policy Paper

10.1109/SE4SG.2013.6596108

2013, Creating the Right Environment for Demandside Response

10.1109/TPWRS.2015.2489679

10.1016/j.ijforecast.2012.10.004

10.1109/TPWRS.2014.2371477

10.1016/j.ijforecast.2015.11.011

10.1109/TPWRS.2009.2030426

10.1016/j.ijforecast.2016.02.001

10.1016/j.energy.2015.12.142

10.1109/PESGM.2014.6939855

10.1109/TII.2016.2528819