Deep-LSTM ensemble framework to forecast Covid-19: an insight to the global pandemic

International Journal of Information Technology - Tập 13 Số 4 - Trang 1291-1301 - 2021
Sourabh Shastri1, Kuljeet Singh1, Sachin Kumar1, Paramjit Kour1, Vibhakar Mansotra1
1Department of Computer Science and IT, University of Jammu, Jammu, Jammu and Kashmir, 180006, India

Tóm tắt

Từ khóa


Tài liệu tham khảo

Kumar D, Malviya R, Sharma PK (2020) CoronaVirus: a review of COVID-19. EJMO 4(1):8–25. https://doi.org/10.14744/ejmo.2020.51418

Centers for Disease Control and Prevention (CDC) (2003) Update: outbreak of severe acute respiratory syndrome-worldwide, 2003. MMWR Morb Mortal Wkly Rep 52(12):241–6.

Peiris JSM, Lai ST, Poon LL, Guan Y, Yam LY, Lim W et al (2003) Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet 361:1319–1325. https://doi.org/10.1016/S0140-6736(03)13077-2

Harapan H, Itoh N, Yufika A, Winardi W, Keam S, Te H et al (2020) Coronavirus disease 2019 (COVID-19): a literature review. J Infect Public Health. https://doi.org/10.1016/j.jiph.2020.03.019

Kaul D (2020) An overview of coronaviruses including the SARS-2 coronavirus e molecular biology, epidemiology and clinical implications. Curr Med Res Pract 10:54–64. https://doi.org/10.1016/j.cmrp.2020.04.001

Hassan S, Sheikh FN, Jamal S, Ezeh JK, Akhtar A (2020) Coronavirus (COVID-19): a review of clinical features, diagnosis, and treatment. Cureus 12(3):e7355. https://doi.org/10.7759/Fcureus.7355

Singhal T (2020) A review of coronavirus disease-2019 (COVID-19). Indian J Pediatr 87(4):281–286. https://doi.org/10.1007/s12098-020-03263-6

Ali SA, Baloch M, Ahmed N, Ali AA, Iqbal A (2020) The outbreak of coronavirus disease 2019 (COVID-19)—an emerging global health threat. J Infect Public Health 13(4):644–646. https://doi.org/10.1016/j.jiph.2020.02.033

Zhang R, Wang X, Ni L, Dia X, Maa B, Niu S et al (2020) COVID-19: melatonin as a potential adjuvant treatment. Life Sci 250:117583. https://doi.org/10.1016/j.lfs.2020.117583

Chawla S, Mittal M, Chawla M, Goyal LM (2020) CoronaVirus—SARS-CoV-2: an insight to another way of natural disaster. EAI Endorsed Trans Pervasive Health Technol. https://doi.org/10.4108/eai.28-5-2020.164823

Unhale SS, Ansar QB, Sanap S, Thakhre S, Wadatkar S, Bairagi R et al (2020) A review on CoronaVirus (COVID-19). World J Pharm Life Sci 6(4):109–115

Wordometer Website. https://www.worldometers.info/coronavirus/coronavirus-death-rate/. Accessed 2 Sept 2020

John Hopkins University Covid-19 Dashboard. https://www.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd40299423467b48e9ecf6. Accessed 2 Sept 2020

Vaishya R, Javaid M, Khan IH, Haleem A (2020) Artificial intelligence (AI) applications for COVID-19 pandemic. Diabetes Metab Syndrome 14:337–339. https://doi.org/10.1016/j.dsx.2020.04.012

Kursumovic E, Lennane S, Cook TM (2020) Deaths in healthcare workers due to COVID-19: the need for robust data and analysis. Anaesthesia. https://doi.org/10.1111/anae.15116

Hadley TD, Pettit RW, Malik T, Khoei AA, Salihu HM (2020) Artificial intelligence in global health—a framework and strategy for adoption and sustainability. Int J Maternal Child Health AIDS 9(1):121–127. https://doi.org/10.21106/ijma.296

Penga Z, Wang J, Moa Y, Duana W, Xianga G, Yi M et al (2020) Unlikely SARS-CoV-2 vertical transmission from mother to child: a case report. J Infect Public Health 13:818–820. https://doi.org/10.1016/j.jiph.2020.04.004

Pourhomayoun M, Shakibi M (2020) Predicting mortality risk in patients with COVID-19 using artificial intelligence to help medical decision-making. medRxiv preprint. https://doi.org/10.1101/2020.03.30.20047308

Hu Z, Ge Q, Li S, Jin L, Xiong M (2020) Artificial intelligence forecasting of Covid-19 in China. arXiv: Other Quantitative Biology

Dong E, Du H, Gardner L (2020) An interactive web-based dashboard to track COVID-19 in real time. Lancet Infect Dis. https://doi.org/10.1016/S1473-3099(20)30120-1

John Hopkins University Website. https://systems.jhu.edu/research/public-health/ncov/. Accessed 1 Sept 2020

HealthMap Dashboard. https://www.healthmap.org/covid-19/. Accessed 1 Sept 2020

Xu B, Kraemer MUG (2020) Open access epidemiological data from the COVID-19 outbreak. Lancet Infect Dis. https://doi.org/10.1016/S1473-3099(20)30119-5

World Health Organization Website. https://covid19.who.int/. Accessed 1 Sept 2020

Noll NB, Aksamentov I, Druelle V, Badenhorst A, Ronzani B, Jefferies G, et al. COVID-19 Scenarios: an interactive tool to explore the spread and associated morbidity and mortality of SARS-CoV-2, medRxiv preprint 2020, https://doi.org/10.1101/2020.05.05.20091363.

Covid-19 Scenarios Web Application, University of Basel. https://covid19-scenarios.org/. Accessed 1 Sept 2020.

GitHub Repository. https://github.com/neherlab/covid19_scenarios. Accessed 1 Sept 2020

Covid-19 Forecast Web Application, The University of Melbourne. http://covid19forecast.science.unimelb.edu.au/. Accessed 1 Sept 2020

GitHub Repository. https://github.com/benflips/nCovForecast. Accessed 14 June 2020

Mercatelli D, Triboli L, Fornasari E, Ray F, Giorgi FM (2020) coronapp: a web application to annotate and monitor SARS-CoV-2 mutations. bioRxiv preprint. https://doi.org/10.1101/2020.05.31.124966

COVID-19 genome annotator Web Application. http://giorgilab.dyndns.org/coronapp/. Accessed 28 Aug 2020

GitHub Repository. https://github.com/federicogiorgi/giorgilab/tree/master/coronapp. Accessed 28 Aug 2020

Imran A, Posokhova I, Qureshi HN, Masood U, Riaz S, Ali K et al (2020) AI4COVID-19: AI enabled preliminary diagnosis for COVID-19 from cough samples via an App. arXiv:2004.01275

Li X, Zhu D (2020) Covid-xpert: an AI powered population screening of covid-19 cases using chest radiography images. arXiv:2004.03042

Ji Y, Ma Z, Peppelenbosch MP, Pan Q (2020) Potential association between COVID-19 mortality and health-care resource availability. Lancet Glob Health. https://doi.org/10.1016/S2214-109X(20)30068-1

Mei X, Lee HC, Diao KY, Huang M, Lin B, Chenyu L et al (2020) Artificial intelligence–enabled rapid diagnosis of patients with COVID-19. Nat Med. https://doi.org/10.1038/s41591-020-0931-3

Abbas A, Abdelsamea MM, Gaber MM (2020) Classification of COVID-19 in chest X-ray images using DeTraC deep convolutional neural network. medRxiv preprint. https://doi.org/10.1101/2020.03.30.20047456

Ke YY, Peng TT, Yeh TK, Huang WZ, Chang SE, Wu SH et al (2020) Artificial intelligence approach fighting COVID-19 with repurposing drugs. Biomed J. https://doi.org/10.1016/j.bj.2020.05.001

Wang Z, Wang G, Huang B, Xiong Z, Hong Q, Wu H et al (2020) Masked face recognition dataset and application. arXiv:2003.09093

Narin A, Kaya C, Pamuk Z (2020) Automatic detection of coronavirus disease (COVID-19) using x-ray images and deep convolutional neural networks. arXiv:2003.10849

Wang Y, Hu M, Li Q, Zhang XP, Zhai G, Yao N (2020) Abnormal respiratory patterns classifier may contribute to large-scale screening of people infected with COVID-19 in an accurate and unobtrusive manner. arXiv:2002.05534

Khan AI, Shah JL, Bhat MM (2020) CoroNet: a deep neural network for detection and diagnosis of COVID-19 from chest X-ray images. Comput Methods Programs Biomed. https://doi.org/10.1016/j.cmpb.2020.105581

Gozes O, Frid-Ada M, Greenspan H, Browning PD, Zhang H, Ji W et al (2020) Rapid AI development cycle for the coronavirus (COVID-19) pandemic: initial results for automated detection & patient monitoring using deep learning CT image analysis, pp 1–19. arXiv:2003.05037

Shan F, Gao Y, Wang J, Shi W, Shi N, Han M et al (2020) Lung infection quantification of COVID-19 in CT images with deep learning, pp 1–19. arXiv:2003.04655

Hamimi A (2016) MERS-CoV: Middle East respiratory syndrome coronavirus: can radiology be of help? Initial single center experience. Egypt J RadiolNucl Med 47(1):95–106

Gutiérrez Y, Ott D, Töpperwien M, Salditt T, Scherber C (2018) X-ray computed tomography and its potential in ecological research: a review of studies and optimization of specimen preparation. EcolEvolut 8:7717–7732. https://doi.org/10.1002/Fece3.4149

Swayamsiddha S, Mohanty C (2020) Application of cognitive Internet of Medical Things for COVID-19 pandemic. Diabetes Metab Syndrome. https://doi.org/10.1016/j.dsx.2020.06.014

Nguyen TT (2020) Artificial intelligence in the battle against coronavirus (COVID-19): a survey and future research directions. Preprint. https://doi.org/10.13140/RG.2.2.36491.23846

Ting DSW, Carin L, Dzau V, Wong TY (2020) Digital technology and COVID-19. Nat Med 26(4):459–461. https://doi.org/10.1038/s41591-020-0824-5

Sood SK, Mahajan I (2017) Wearable IoT sensor-based healthcare system for identifying and controlling chikungunya virus. Comput Ind 91:33–44. https://doi.org/10.1016/j.compind.2017.05.006

Naudé W (2020) Artificial intelligence vs COVID-19: limitations, constraints and pitfalls. AI Soc. https://doi.org/10.1007/s00146-020-00978-0

Kinsa Health, U.S. Health Weather Map 2020. https://healthweather.us/?mode=Atypical. Accessed 26 Aug 2020

NPGEO, Dataset of infections in Germany 2020. https://npgeo-corona-npgeo-de.hub.arcgis.com/datasets/dd4580c810204019a7b8eb3e0b329dd6_0/data. Accessed 10 June 2020

SIRM, Covid-19-BSTI Imaging Database 2020. https://www.bsti.org.uk/training-and-education/covid-19-bsti-imaging-database/. Accessed 25 Aug 2020

SIRM, COVID-19 DATABASE 2020. https://www.sirm.org/category/senza-categoria/covid-19/. Accessed 25 Aug 2020

nCoV2019Data, ncov2019 epidemiological data 2020. https://github.com/beoutbreakprepared/nCoV2019. Accessed 26 Aug 2020

COVID-19 Korea Dataset with Patient Routes 2020. https://github.com/ThisIsIsaac/Data-Science-for-COVID-19. Accessed 25 Aug 2020

NewYork-Times, New York times dataset 2020. https://github.com/nytimes/covid-19-data. Accessed 25 Aug 2020

Cohen JP, Morrison P, Dao L (2020) COVID-19 image data collection. arXiv:2003.11597. https://github.com/ieee8023/covid-chestxray-dataset. Accessed 11 June 2020

Goodsell DS, Zardecki C, Di Costanzo L, Duarte JM, Hudson BP, Persikova I et al (2020) RCSB protein data bank: Enabling biomedical research and drug discovery. Protein Sci 29(1):52–65

MegSeg, COVID-19 CT segmentation dataset. http://medicalsegmentation.com/covid19/. Accessed 10 June 2020

Chen E, Lerman K, Ferrara E (2020) COVID-19: the first public Coronavirus Twitter dataset, arXiv:2003.07372

G. Inc. (2020) COVID-19 Community Mobility Reports. https://www.google.com/covid19/mobility/. Accessed 25 August 2020

Sudalai RK (2020) Data, Novel corona-virus dataset. https://www.kaggle.com/sudalairajkumar/novel-corona-virus-2019-dataset. Accessed 29 August 2020

Allen-Institute (2020) CORD-19 research challenge. https://www.kaggle.com/allen-institute-for-ai/CORD-19-research-challenge. Accessed 29 Aug 2020

NCBI (2020) LitCovid. https://www.ncbi.nlm.nih.gov/research/coronavirus/. Accessed 29 Aug 2020

Chen Q, Allot A, Lu Z (2020) Keep up with the latest coronavirus research. Nature 579(7798):193. https://doi.org/10.1038/d41586-020-00694-1

ECDC (2020) European Centre for Disease Prevention and Control (ECDC). https://ourworldindata.org/coronavirus-source-data. Accessed 29 Aug 2020

CSSEGISandData (2020) CSSEGISandData/COVID-19. https://github.com/CSSEGISandData/COVID-19. Accessed 30 Aug 2020

Smith (2020) Coronavirus (covid19) tweets. www.kaggle.com/smid80/coronavirus-covid19-tweets. Accessed 30 Aug 2020

GISAID (2020) Genomic epidemiology of hCoV-19. https://www.gisaid.org/epiflu-applications/next-hcov-19-app/. Accessed 30 Aug 2020

CHIME (2020) COVID-19 Hospital Impact Model for Epidemics. https://github.com/CodeForPhilly/chime. Accessed 28 Aug 2020

WHO (2020) Global research on novel coronavirus 2019. https://www.who.int/emergencies/diseases/novel-coronavirus-2019/global-research-on-novel-coronavirus-2019-ncov. Accessed 28 Aug 2020

Singh K, Shastri S, Bhadwal AS, Kour P et al (2019) Implementation of exponential smoothing for forecasting time series data. Int J Sci Res Comput Sci Appl Manag Stud

World Health Organization (2020) Covid-19 Situation Reports. https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports. Accessed 28 Aug 2020

Li L, Qin L, Xu Z, Yin Y, Wang X, Kong B et al (2020) Artificial intelligence distinguishes COVID-19 from community acquired pneumonia on chest CT. Radiology. https://doi.org/10.1148/radiol.2020200905

Maghdid HS, Asaad AT, Ghafoor KZ, Sadiq AS, Khan MK (2020) Diagnosing COVID-19 pneumonia from X-ray and CT images using deep learning and transfer learning algorithms. arXiv:2004.00038

Ghoshal B, Tucker A (2020) Estimating uncertainty and interpretability in deep learning for coronavirus (COVID-19) detection. arXiv:2003.10769

Gozes O, Frid-Adar M, Greenspan H, Browning PD, Zhang H, Ji W et al (2020) Rapid AI development cycle for the coronavirus (COVID-19) pandemic: initial results for automated detection and patient monitoring using deep learning CT image analysis. arXiv:2003.05037

Wang S, Kang B, Ma J, Zeng X, Xiao M, Guo J et al (2020) A deep learning algorithm using CT images to screen for coronavirus disease (COVID-19). medRxiv. https://doi.org/10.1101/2020.02.14.20023028

Chenthamarakshan V, Das P, Padhi I, Strobelt H, Lim KW, Hoover B et al (2020) Target-specific and selective drug design for covid-19 using deep generative models. arXiv:2004.01215

Chen J, Wu L, Zhang J, Zhang L, Gong D, Zhao Y et al (2020) Deep learning-based model for detecting 2019 novel Coronavirus pneumonia on high-resolution computed tomography: a prospective study. medRxiv. https://doi.org/10.1101/2020.02.25.20021568

Apostolopoulos ID, Mpesiana TA (2020) Covid-19: automatic detection from x-ray images utilizing transfer learning with convolutional neural networks. PhysEngSci Med. https://doi.org/10.1007/s13246-020-00865-4

Yamac M, Ahishali M, Degerli A, Kiranyaz S, Chowdhury MEH, Gabbouj M (2020) Convolutional sparse support estimator based Covid-19 recognition from X-ray images. arXiv:2005.04014v1 [eess.IV]

Jin C, Chen W, Cao Y, Xu Z, Zhang X, Deng L et al (2020) Development and evaluation of an AI system for COVID-19. medRxiv. https://doi.org/10.1101/2020.03.20.20039834

Farooq M, Hafeez A (2020) COVID-ResNet: a deep learning framework for screening of COVID19 from radiographs. arXiv:2003.14395

Sethy PK, Behera SK (2020) Detection of coronavirus disease (covid19) based on deep features. Preprints. https://doi.org/10.20944/preprints202003.0300.v1

Barstugan M, Ozkaya U, Ozturk S (2020) Coronavirus (covid-19) classification using ct images by machine learning methods. arXiv:2003.09424

Jin S, Wang B, Xu H, Luo C, Wei L, Zhao W et al (2020) AI-assisted CT imaging analysis for COVID-19 screening: Building and deploying a medical AI system in four weeks. medRxiv. https://doi.org/10.1101/2020.03.19.20039354

Wang L, Lin ZQ, Wong A (2020) COVID-Net: a tailored deep convolutional neural network design for detection of COVID-19 cases from chest X-ray images. arXiv:2003.09871v4 [eess.IV]

Shastri S, Singh K, Kumar S, Kour P, Mansotra V (2020) Time series forecasting of covid-19 using deep learning models: India-USA comparative case study. Chaos Solitons Fractals. https://doi.org/10.1016/j.chaos.2020.110227