Deep Feature Extraction and Classification of Hyperspectral Images Based on Convolutional Neural Networks
Tóm tắt
Từ khóa
Tài liệu tham khảo
simonyan, 0, Very deep convolutional networks for large-scale image recognition, Proc ICLR, 1
szegedy, 0, Going deeper with convolutions, Proc IEEE CVPR, 1
deng, 0, ImageNet: A large-scale hierarchical image database, Proc CVPR, 248
lecun, 0, The MNIST Database of Handwritten Digits
vincent, 2010, Stacked denoising autoencoders, J Mach Learn Res, 11, 3371
hinton, 2006, Reducing the dimensionality of data with neural networks, Science, 313, 504, 10.1126/science.1127647
benediktsson, 2015, Spectral–Spatial Classification of Hyperspectral Remote Sensing Images
krizhevsky, 0, ImageNet classification with deep convolutional neural networks, Proc Neural Inf Process Syst, 1106
tao, 2015, Unsupervised spectral–spatial feature learning with stacked sparse autoencoder for hyperspectral imagery classification, IEEE Geosci Remote Sens Lett, 12, 2438, 10.1109/LGRS.2015.2482520
tenenbaum, 2000, A global geometric framework for nonlinear dimensionality reduction, Science, 290, 2319, 10.1126/science.290.5500.2319
scholkopf, 2002, Learning with kernels
kuo, 2009, Kernel nonparametric weighted feature extraction for hyperspectral image classification, IEEE Trans Geosci Remote Sens, 47, 1139, 10.1109/TGRS.2008.2008308
bartholomew, 2011, Analysis of multivariate social science data, Structural Equation Modeling A Multidisciplinary Journal, 18, 686, 10.1080/10705511.2011.607725
hofmann, 1981, Remote sensing: The quantitative approach, IEEE Trans Pattern Anal Mach Intell, 3, 713
yang, 2007, LLE-PLS nonlinear modeling method for near infrared spectroscopy and its application, Spectrosc Spectral Anal, 27, 1955
nair, 0, Rectified linear units improve restricted Boltzmann machines, Proc Int Conf Mach Learn, 807
hinton, 2012, Improving neural networks by preventing co-adaptation of feature detectors, Comput Sci, 3, 212