Deep Feature Extraction and Classification of Hyperspectral Images Based on Convolutional Neural Networks

IEEE Transactions on Geoscience and Remote Sensing - Tập 54 Số 10 - Trang 6232-6251 - 2016
Yushi Chen1, Hanlu Jiang1, Chunyang Li1, Xiuping Jia2, Pedram Ghamisi3
1Department of Information Engineering, School of Electronics and Information Engineering, Harbin Institute of Technology, Harbin, China
2School of Engineering and Information Technology, The University of New South Wales, Canberra, A.C.T., Australia
3Signal Processing in Earth Observation, German Aerospace Center (DLR), Weßling, Germany

Tóm tắt

Từ khóa


Tài liệu tham khảo

simonyan, 0, Very deep convolutional networks for large-scale image recognition, Proc ICLR, 1

szegedy, 0, Going deeper with convolutions, Proc IEEE CVPR, 1

deng, 0, ImageNet: A large-scale hierarchical image database, Proc CVPR, 248

lecun, 0, The MNIST Database of Handwritten Digits

10.1109/TGRS.2015.2478379

10.1109/JSTARS.2015.2388577

10.1109/TIP.2016.2548241

vincent, 2010, Stacked denoising autoencoders, J Mach Learn Res, 11, 3371

10.1162/neco.2010.08-09-1081

10.1162/neco.2006.18.7.1527

10.1109/5.726791

hinton, 2006, Reducing the dimensionality of data with neural networks, Science, 313, 504, 10.1126/science.1127647

10.1109/JSTARS.2014.2329330

10.1109/TIT.1968.1054102

benediktsson, 2015, Spectral–Spatial Classification of Hyperspectral Remote Sensing Images

10.1109/TGRS.2008.922034

10.1109/TGRS.2011.2129595

10.1109/TGRS.2012.2205263

10.1109/TPAMI.2013.50

10.1109/TGRS.2013.2286953

krizhevsky, 0, ImageNet classification with deep convolutional neural networks, Proc Neural Inf Process Syst, 1106

10.1109/TPAMI.2012.272

tao, 2015, Unsupervised spectral–spatial feature learning with stacked sparse autoencoder for hyperspectral imagery classification, IEEE Geosci Remote Sens Lett, 12, 2438, 10.1109/LGRS.2015.2482520

10.1109/TGRS.2004.842478

10.1109/MSP.2013.2279894

10.1109/TGRS.2008.2002952

10.1109/CVPR.2014.81

tenenbaum, 2000, A global geometric framework for nonlinear dimensionality reduction, Science, 290, 2319, 10.1126/science.290.5500.2319

10.1126/science.290.5500.2323

10.1109/TGRS.2006.881801

scholkopf, 2002, Learning with kernels

kuo, 2009, Kernel nonparametric weighted feature extraction for hyperspectral image classification, IEEE Trans Geosci Remote Sens, 47, 1139, 10.1109/TGRS.2008.2008308

10.1109/MLSP.2009.5306202

10.1109/JPROC.2012.2197589

10.1109/LGRS.2010.2047711

10.1109/JPROC.2012.2229082

10.1109/MGRS.2013.2244672

10.1109/TGRS.2011.2153861

10.1109/LGRS.2011.2172185

10.1109/TGRS.2002.804721

10.1109/TGRS.2008.2005729

10.1109/JPROC.2015.2449668

10.1109/36.803413

bartholomew, 2011, Analysis of multivariate social science data, Structural Equation Modeling A Multidisciplinary Journal, 18, 686, 10.1080/10705511.2011.607725

hofmann, 1981, Remote sensing: The quantitative approach, IEEE Trans Pattern Anal Mach Intell, 3, 713

10.1145/1961189.1961199

yang, 2007, LLE-PLS nonlinear modeling method for near infrared spectroscopy and its application, Spectrosc Spectral Anal, 27, 1955

nair, 0, Rectified linear units improve restricted Boltzmann machines, Proc Int Conf Mach Learn, 807

10.2307/1267351

10.1109/ICMLA.2013.18

hinton, 2012, Improving neural networks by preventing co-adaptation of feature detectors, Comput Sci, 3, 212