Deep Electrical Conductivity Anomalies in the Chaun Bay Region Based on Magnetic Variation Sounding Data

Pleiades Publishing Ltd - Tập 59 - Trang 765-780 - 2023
S. S. Starzhinskii1, D. A. Sormakov2
1V.I. Il’ichev Pacific Oceanological Institute, Far Eastern Branch of the Russian Academy of Science, Vladivostok, Russia
2Arctic and Antarctic Research Institute, St. Petersburg, Russia

Tóm tắt

Abstract—This paper discusses the results of magnetic variation soundings at two sites in the eastern Arctic, in the Chaun Bay region, at the Pevek and Valkarkai weather stations, by using the ModEM program to perform a three–dimensional (3D) inversion of tippers. The inversion has produced a geoelectric model of the region in a subsurface area of 300 × 300 × 200 km. The moduli of tippers at both sites have values between 0.2 and 0.85, reaching the maximum ones in a period of 1000 s. At the Pevek weather station, the real induction arrow in the Parkinson convention is oriented to the west throughout the range of periods. At the second site, its azimuth changes from 30° to the NE to –30° to the NW as the period of variations increases. Throughout the range of depths, conductive inhomogeneities are located to the west and north of the Chaun folded zone. They extend as a narrow strip under the western and northern coastal parts of the zone at depths of 8–12 km. As the depth increases, they are split into blocks, which reach their maximum size in the horizontal plane at depths ranging between 20 and 30 km. The most prominent among them is the conductive block beneath the southern part of the Chaun Bay. The roots of these blocks are distinguishable at depths of up to 100 km. The Chaun folded zone is represented by a high–resistance block down to a depth of 150 km with an electrical resistivity of more than 1000 Ω m. Comparison of the obtained geoelectric model with the geophysical studies previously conducted here reveals a correlation between the location of conductive formations and the location of weakly positive anomalies in the gravity field in the Bouguer and isostatic reductions in the coastal water area.

Tài liệu tham khảo

Antashchuk, K., Atakov, A., Mazurkevich, K., and Petrov, O., Tectonic structure and metallogeny of the Western Chukotka: insights from comprehensive geophysical dataset interpretation, EGU General Assembly 2020, Online conf., 4–8 May 2020, Article ID EGU2020-11192. https://doi.org/10.5194/egusphere-egu2020-11192 Berdichevsky, M.N. and Dmitriev, V.I., Models and Methods of Magnetotellurics, Berlin: Springer, 2008. Berdichevsky, M.N., Dmitriev, V.I., Golubtsova, N.S., Mershchikova, N.A., and Pushkarev, P.Yu., Magnetovariational sounding: new possibilities, Izv., Phys. Solid Earth, 2003, vol. 39, no. 9, pp. 701–727. Campanya, J., Ogaya X., Jones, A.G., Rath, V., Vozar, J., and Meqbel, N., The advantages of complementing MT profiles in 3-D environments with geomagnetic transfer function and interstation horizontal magnetic transfer function data: results from a synthetic case study, Geophys. J. Int., 2016, vol. 207, no. 3, pp. 1818–1836. Dyment, J., Choi, Y., Hamoudi, M., Lesur, V., and Thebault, E., Global equivalent magnetization of the oceanic lithosphere, Earth Planet. Sci. Lett., 2015, vol. 430, pp. 54–65. https://doi.org/10.1016/j.epsl.2015.08.002 Efremov, S.V., Geochemistry and genesis of ultrapotassic and potassic magmatites of the eastern shore of Chaun Bay (Chukotka), and their implication for metallogenic specialization of tin-bearing granitoids, Russ. J. Pac. Geol., 2009, vol. 3, no. 1, pp. 80–90. Efremov, S.V. and Travin, A.V., Isotopic age and paleogeodynamic position of ultrapotassic magmatism of Central Chukotka, Geodyn. Tectonophys., 2021, vol. 12, no. 1, pp. 76–83. https://doi.org/10.5800/GT-2021-12-1-0513 Egbert, G.D. and Kelbert, A., Computational recipes for electromagnetics inverse problems, Geophys. J. Int., 2012, vol. 189, no. 1, pp. 251–267. https://doi.org/10.1111/j.1365-246X.2011.05347.x Flechtner, F., Reigber, C., Rummel, R., and Balmino, G., Satellite gravimetry: a review of its realization, Surv. Geophys., 2021, vol. 42, no. 5, pp. 1029–1074. Förste, C., Bruinsma, S.L., Abrikosov, O., Lemoine, J.-M., Marty, J.C., Flechtner, F., Balmino, G., Barthelmes, F., and Biancale, R., EIGEN-6C4: The Latest Combined Global Gravity Field Model Including GOCE Data up to Degree and Order 2190 of GFZ Potsdam and GRGS Toulouse, Potsdam: GFZ, GFZ Data Services, 2014. https://doi.org/10.5880/icgem.2015.1 Gaina, C., Werner, S.C., Saltus, R., Maus, S., and the CAMP-GM group, Circum-Arctic mapping project: new magnetic and gravity anomaly maps of the Arctic, Geol. Soc. London Mem., 2011, vol. 35, pp. 39–48. https://doi.org/10.1144/M35.3 Gaina, C., Medvedev, S., Torsvik, T.H., Koulakov, I., and Werner, S.C., 4D Arctic: A glimpse into the structure and evolution of the Arctic in the light of new geophysical maps, plate tectonics and tomographic models, Surv. Geophys., 2014, vol. 35, no. 5, pp. 1095–1122, https://doi.org/10.1007/s10712-013-9254-y Geologicheskaya karta SSSR. Masshtab 1:200000. List R-XXI, XXII, XV, XVI. Seriya Anyuisko-Chaunskaya. Ob”yasnitel’naya zapiska (Geological map of the USSR, 1:200000 scale, sheet R–XXI, XXII, XV, XVI, Anyui–Chaun series, explanatory note), Magadag: FGBU VSEGEI, 1979. Glebovskii, V.Yu., Chernykh, A.A., Kaminskii, V.D., Vasil’ev, V.V., Korneva, M.S., Sukhanova, A.V., Red’ko, A.G., and Yakovenko, I.V., General results and future plans of magnitometric and gravimetric investigations in the Arctic Ocean, in 70 let v Arktike, Antarktike i Mirovom Okeane: Sb. nauchnykh trudov (70 years in the Arctic, the Antarctic and the World Ocean, a collection of scientific papers), Kaminskii, V.D., Avetisov, G.P., and Ivanov, V.L., Eds., St. Petersburg: VNIIOkeanologiya, 2018, pp. 198–208. Gosudarstvennaya geologicheskaya karta Rossiiskoi Federatsii. Masshtab 1:2 000 000. List R-59-XXXI, XXXII. Seriya Anyuisko-Chaunskaya. Ob”yasnitel’naya zapiska (National geological map of the Russian Federation, 1:2000000 scale, sheet R–59–XXXI, XXXII, Anyui–Chaun series, explanatory note,), Moscow: Moskovskii filial FGBU VSEGEI, 2016. Gravimetricheskaya karta Rossii masshtaba 1:5000000. Dal’nevostochnyi federal’nyi okrug (Gravimetric map of Russia at the scale of 1:5000000, Far Eastern Federal District), Petrov, O.V., Morozov, A.F., Lipilin, A.V., Litvinova, T.P., Eds., St. Petersburg: VSEGEI, 2004. https://www.vsegei.ru/ ru/info/gisatlas/dvfo/okrug/gravika.jpg. Jorgensen, M.R., Čuma, M., and Zhdanov, M.S., 3D joint inversion of magnetotelluric and magnetovariational data to image conductive anomalies in Southern Alberta, Canada, SEG Annual Meeting 2015, New Orleans, 2015. Jupp, D.L.B. and Vozoff, K., Discussion on “The magnetotelluric method in the exploration of sedimentary basins” by Keeva Vozoff (Geophysics, February 1972, p. 98–114), Geophysics, 1976, vol. 41, no. 2, pp. 325–328. Karta rel’efa podoshvy litosfery Rossii. Masshtab 1 : 10000000. Seriya: obzornye karty Rossiiskoi Fereratsii masshtaba 1 : 10 000 000 (1:10000000 Relief Map of the Lithosphere Bottom of Russia, 1:10000000 General Maps of the Russian Federation Series), Solov’ev, V.V., Ed., FGBU VSEGEI, 1995. http://www.geokniga.org/maps/1229. Kelbert, A., Meqbel, N.M., Egbert, G.D., and Tandon, K., ModEM: A modular system for inversion of electromagnetic geophysical data, Comput. Geosci., 2014, vol. 66, pp 40–53. https://doi.org/10.1016/j.cageo.2014.01.010 Laundal, K.M. and Richmond, A.D., Magnetic coordinate systems, Space Sci Rev., 2017, vol. 206, no. 1-4, pp. 27–59. https://doi.org/10.1007/s11214-016-0275-y Laverov, N.P., Lobkovsky, L.I., Kononov, M.V., Dobretsov, N.L., Vernikovsky, V.A., Sokolov, S.D., and Shipilov, E.V., A geodynamic model of the evolution of the Arctic basin and adjacent territories in the Mesozoic and Cenozoic and the outer limit of the Russian continental shelf, Geotectonics, 2013, vol. 47, no. 1, pp. 1–30. Li, C.-F., Lu, Y., and Wang, J., A global reference model of Curie-point depths based on EMAG2, Sci. Rep., 2017, vol. 7, Article ID 45129. https://doi.org/10.1038/srep45129 Lu, Y., Li, C.-F., Wang, J., and Wan, X., Arctic geothermal structures inferred from Curie-point depths and their geodynamic implications, Tectonophysics, 2022, vol. 822, Article ID 229158. https://doi.org/10.1016/j.tecto.2021.229158 Luchitskaya, M.V., Tikhomirov, P.L, and Shats, A.L., U-Pb ages and tectonic setting of mid-Cretaceous magmatism in Chukotka (NE Russia), Ch. 6 of ICAM VI: Proc. Int. Conf. on Arctic Margins VI, Stone, D.B., Grikurov, G.E., Clough, J.G., Oakey, G.N., and Thurston, D.K., Fairbanks, 2011, St. Petersburg: VSEGEI, 2014, pp. 157–169. https://vsegei.ru/ru/public/icam/cam-all_VVS.pdf. Meyer, B., Chulliat, A., and Saltus, R., EMAG2v3: Earth Magnetic Anomaly Grid (2-arc-minute resolution), Version 3, Asheville: NOAA National Centers for Environmental Information, 2017. https://doi.org/10.7289/V5H70CVX Miller, E.L. and Verzhbitsky, V.E., Structural studies near Pevek, Russia: implications for formation of the East Siberian Shelf and Makarov Basin of the Arctic Ocean, in Geology, Geophysics and Tectonics of Northeastern Russia: A Tribute to Leonid Parfenov, Stone, D.B., Fujita, K., Layer, P.W., Miller, E.L., Prokopiev, A.V., and Toro, J., Eds., Stephan Mueller Spec. Publ. Ser., 2009, vol. 4, pp. 223–241. https://doi.org/10.5194/smsps-4-223-2009 Pace, F., Martí, A., Queralt, P., Santilano, A., Manzella, A., Ledo, J., and Godio, A., Three-dimensional magnetotelluric characterization of the Travale geothermal field (Italy), Remote Sens., 2022, vol. 14, no. 3, Article ID 542. https://doi.org/10.3390/rs14030542 Petrov, O., Morozov, A., Shokalsky, S., Kashubin, S., Artemieva, I.M., Sobolev, N., Petrov, E., Ernst, R.E., Sergeev, S., and Smelror, M., Crustal structure and tectonic model of the Arctic region, Earth-Sci. Rev., 2016, vol. 154, pp. 29–71. Rekant, P.V., Petrov, O.V., and Prishchepenko, D.V., The history of the formation of southern East Siberian Sea shelf thrust–and–fold zone. Results of the comprehensive seismic and geological data interpretation, Reg. Geol. Metallog., 2020, no. 82, pp. 35–59. Sandwell, D., Garcia, E., Soofi, K., Wessel, P., Chandler, M., and Smith, W.H.F., Toward 1-mGal accuracy in global marine gravity from CryoSat-2, Envisat, and Jason-1, Leading Edge, 2013, vol. 32, no. 8, pp. 892–899. https://doi.org/10.1190/tle32080892.1 Seredkina, A.I. and Filippov, S.V., The depth to magnetic sources in the Arctic and its relationship with some parameters of the lithosphere, Russ. Geol. Geophys., 2021, vol. 62, no. 7, pp. 735–745. doi https://doi.org/10.2113/RGG20194106 Sidorov, R.V., Kaban, M.K., Soloviev, A.A., Petrunin, A.G., Gvishiani, A.D., Oshchenko, A.A., Popov, A.B., and Krasnoperov, R.I., Sedimentary basins of the eastern Asia Arctic zone: new details on their structure revealed by decompensative gravity anomalies, Solid Earth, 2021, vol. 12, no. 12, pp. 2773–2788. https://doi.org/10.5194/se-12-2773-2021 Sinmyo, R. and Keppler, H., Electrical conductivity of NaCl-bearing aqueous fluids to 600°C and 1 GPa, Contrib. Mineral. Petrol., 2017, vol. 172, no. 1, Article ID 4. https://doi.org/10.1007/s00410-016-1323-z Sokolov, S.D., Ledneva, G.V., Tuchkova, M.I., Luchitskaya, M.V., Ganelin, A.V., and Verzhbitsky, V.E., Chukchi arctic continental margins: tectonic evolution, link to the opening of the Amerasia Basin, Ch. 4 of ICAM VI: Proc. Int. Conf. on Arctic Margins VI, Stone, D.B., Grikurov, G.E., Clough, J.G., Oakey, G.N., and Thurston, D.K., Fairbanks, 2011, St. Petersburg: Press VSEGEI, 2014, pp. 93–113. Solov’ev, V.M., Seleznev, V.S., Sal’nikov, A.S., Shibaev, S.V., Timofeev, V.Yu., Liseikin, A.V., and Shenmaier, A.E., Deep seismic structure of the boundary zone between the Eurasian and Okhotsk plates in Eastern Russia (along the 3DV deep seismic sounding profile), Russ. Geol. Geophys., 2016, vol. 57, no. 11, pp. 1613–1625. Starzhinskii, S.S., Nikiforov, V.M., and Yoshikava, A., The experience of magnetovariational sounding in the Arctic: the Laptev sea region, Izv., Phys. Solid Earth, 2020, vol. 56, no. 2, pp. 225–237. https://doi.org/10.31857/S0002333720020106 Starzhinskii, S.S., Yoshikava, A., and Khomutov, S.Yu., Geoelectric section of the coastal region of the Chukchi sea near the Cape Schmidt observatory, Russ. Geol. Geophys., 2022, vol. 63, no. 12, pp. 1459–1473. https://doi.org/10.2113/RGG20214362 Tietze, K., Ritter, O., and Egbert, G.D., 3-D inversion of the magnetotelluric phase tensor and vertical magnetic transfer function, Geophys. J. Int., 2015, vol. 203, no. 2, pp. 1128–1148. Tikhomirov, P.L., Luchitskaya, M.V., and Kravchenko-Berezhnoy, I.R., Comparison of Cretaceous granitoids of the Chaun tectonic zone to those of the Taigonos Peninsula, NE Asia: rock chemistry, composition of rock forming minerals, and conditions of formation, in Geology, Geophysics and Tectonics of Northeastern Russia: A Tribute to Leonid Parfenov, Stone, D.B., Fujita, K., Layer, P.W., Miller, E.L., Prokopiev, A.V., and Toro, J., Eds., Stephan Mueller Spec. Publ. Ser., 2009, vol. 4, pp. 289–311. https://doi.org/10.5194/smsps-4-289-2009 Vatrushkina, E.V., Tuchkova, M.I., and Sokolov, S.D., Supraproduction volcanism of Chukotka terrane in the Late Jurassic-Early Cretaceous (Arctic region, Russia), Geotectonics, 2019, vol. 53, no. 6, pp. 713–725. Yakovlev, A.V., Bushenkova, N.A., Kulakov, I.Yu., and Dobretsov, N.L., Structure of the upper mantle in the Circum-Arctic region from regional seismic tomography, Russ. Geol. Geophys., 2012, vol. 53, no. 10, pp. 963–971. Zavarzina, G.A., Murzin, R.R., Zakharova, O.A., and Stepanova, V.S., Results of an integrated analysis of airgeophysical and seismic data of eastern part of Eastern Siberian sea, Geofizika, 2017, no. 4, pp. 69–75.