Deep Convolutional Transfer Learning Network: A New Method for Intelligent Fault Diagnosis of Machines With Unlabeled Data

IEEE Transactions on Industrial Electronics - Tập 66 Số 9 - Trang 7316-7325 - 2019
Liang Guo1, Yaguo Lei1, Saibo Xing1, Tao Yan1, Naipeng Li1
1Key Laboratory of Education Ministry for Modern Design and Rotor-bearing System, Xi’an Jiaotong University, Xi’an, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

van der maaten, 2014, Accelerating t-SNE using tree-based algorithms, J Mach Learn Res, 15, 3221

10.1109/TIE.2016.2627020

10.1109/TIE.2016.2519325

witten, 2016, Data Mining Practical Machine Learning Tools and Techniques

10.1016/j.ymssp.2017.11.016

10.1109/TIE.2016.2627020

10.1109/TKDE.2009.191

10.1007/s10994-009-5152-4

10.1109/TGRS.2015.2503885

long, 0, Learning transferable features with deep adaptation networks, Proc Int Conf Mach Learn, 97

10.1145/2629528

10.1109/TIM.2016.2573078

ganin, 2016, Domain-adversarial training of neural networks, J Mach Learn Res, 17, 1

10.1016/j.ymssp.2015.08.030

10.1016/j.jsv.2005.03.007

10.1016/j.neucom.2017.07.032

10.1109/TSM.2017.2676245

10.1109/TNN.2010.2091281

10.1109/TIE.2014.2327589

10.1109/ACCESS.2017.2720965

10.1016/j.neucom.2015.01.016

10.1016/j.neucom.2017.02.045

10.1109/TIE.2015.2422394

lei, 2016, Intelligent Fault Diagnosis and Remaining Useful Life Prediction of Rotating Machinery

10.1109/CVPR.2014.222

10.1109/ICRA.2017.7989250

10.1109/MCI.2015.2501545

10.1109/ICPHM.2016.7542845

10.1109/TSMC.2017.2754287

0, Case Western Reserve University Bearing Data Center Website

tzeng, 2014, Deep domain confusion: Maximizing for domain invariance, arXiv 1412 3474