Deep Convolutional Neural Networks for Computer-Aided Detection: CNN Architectures, Dataset Characteristics and Transfer Learning

IEEE Transactions on Medical Imaging - Tập 35 Số 5 - Trang 1285-1298 - 2016
Hoo-Chang Shin1, Holger R. Roth1, Mingchen Gao2, Le Lü3, Ziyue Xu2, Isabella Nogues1, Jianhua Yao3, Daniel J. Mollura2, Ronald M. Summers3
1Imaging Biomarkers and Computer-Aided Diagnosis Laboratory,
2Center for Infectious Disease Imaging,
3Clinical Image Processing Service, National Institutes of Health Clinical Center, Bethesda, MD, USA; Imaging Biomarkers and Computer-Aided Diagnosis Laboratory

Tóm tắt

Từ khóa


Tài liệu tham khảo

10.1007/978-3-319-10584-0_22

zeiler, 2014, Visualizing and understanding con volutional networks, Proc Eur Conf Comput Vis, 818

10.1109/72.279181

10.1162/neco.2006.18.7.1527

10.1109/TMI.2015.2393954

10.1109/TMI.2013.2241448

10.1109/CVPR.2015.7298594

10.1109/CVPR.2008.4587633

10.1109/CVPR.2005.177

10.1023/B:VISI.0000029664.99615.94

10.1016/j.compmedimag.2011.07.003

seff, 2015, Leveraging mid-level semantic boundary cues for computer-aided lymph node detection, Proc MICCAI

10.5244/C.25.76

chatfield, 2014, Return of the devil in the details: Delving deep into convolutional nets, Br Mach Vis Conf

10.1007/s11263-014-0777-6

10.1007/978-3-319-24553-9_62

gupta, 2013, Natural image bases to represent neuroimaging data, Proc ICML, 987

lu, 2008, Accurate polyp segmentation for 3d CT colonography using multi-staged probabilistic binary learning and compositional model, Proc IEEE Comput Vis Pattern Recognit Conf, 1

kim, 2014, Performance assessment of retroperitoneal lymph node computer-assisted detection using random forest and deep convolutional neural network learning algorithms in tandem, 102nd Annu Meet Radiol Soc N Am

10.1109/CVPR.2011.5995359

holmes iii, 2006, The lung tissue research consortium: An extensive open database containing histological, clinical, and radiological data to study chronic lung disease, Proc MICCAI Open Sci Workshop

long, 2015, Fully convolutional networks for semantic segmentation, Proc IEEE Conf Comput Vis Pattern Recognit, 3431

tajbakhsh, 2015, Computer-aided pulmonary embolism detection using a novel vessel-aligned multi-planar image representation and convolutional neural networks, Proc MICCAI

chen, 2015, Semantic image segmentation with deep convolutional nets and fully connected CRFs, Proc ICLR

sermanet, 2014, Overfeat: Integrated recognition, localization and detection using convolutional networks, Proc ICLR

simonyan, 2014, Very deep convolutional networks for large-scale image recognition, Proc ICLR

russakovsky, 2014, ImageNet large scale visual recognition challenge, arXiv 1409 0575

10.1142/S0218488598000094

deng, 2009, ImageNet: A large-scale hierarchical image database, Proc IEEE Conf Comput Vis Pattern Recognit, 248

10.1109/TPAMI.2013.96

roth, 0, Improving computer-aided detection using convolutional neural networks and random view aggregation, IEEE Trans Med Imag

10.1007/978-3-319-10443-0_39

10.1016/j.media.2012.11.001

10.1109/TMI.2011.2168234

10.1007/978-3-319-14104-6_16

10.1016/j.media.2011.05.005

oquab, 2015, Learning and transferring mid-level image representations using convolutional neural networks, Proc IEEE Conf Comput Vis Pattern Recognit, 1717

10.5244/C.26.80

10.1007/978-3-319-10584-0_23

zhou, 2014, Learning deep features for scene recognition using places database, Proc NIPS, 487

10.1109/CVPRW.2014.131

10.1145/2647868.2654889

10.1145/219717.219748

li, 2014, Medical image classification with convolutional neural network, Proc 13th Int Conf Control Automat Robot Vis, 844

10.1016/j.neuroimage.2014.12.061

ciresan, 2013, Mitosis detection in breast cancer histology images with deep neural networks, Proc MICCAI

10.1109/ISBI.2015.7163871

gao, 2015, Holistic classification of CT attenuation patterns for interstitial lung diseases via deep convolutional neural networks, Proc MICCAI First Workshop Deep Learn Med Image Anal

10.1109/CVPR.2015.7298712

10.1016/j.media.2015.08.001

10.1109/TMI.2014.2377694

pan, 2015, Brain tumor grading based on neural networks and convolutional neural networks, Proc Annu Int Conf IEEE Eng Med Biol Soc, 699

shen, 2015, Multi-scale convolutional neural networks for lung nodule classification, IPMI, 588

carneiro, 2015, Unregistered multiview mammogram analysis with pre-trained deep learning models, Proc MICCAI, 652

10.1007/978-3-319-24553-9_72

schlegl, 2014, Medical Comput Vision Algorithms for Big Data, 82, 10.1007/978-3-319-13972-2_8

10.1109/CVPR.2015.7298643

krizhevsky, 2012, ImageNet classification with deep convolutional neural networks, Proc NIPS, 1097

10.1109/5.726791

10.1109/TPAMI.2015.2437384

krizhevsky, 2009, Learning multiple layers of features from tiny images

10.1007/s11263-014-0733-5

10.1109/CVPR.2015.7298668

10.1109/TPAMI.2015.2389824

10.1109/ISBI.2015.7163869

10.1109/ICCV.2015.163

roth, 2015, DeepOrgan: Multi-level deep convolutional networks for automated pancreas segmentation, Proc MICCAI

10.1109/TPAMI.2012.143

gao, 2015, Segmentation label propagation using deep convolutional neural networks and dense conditional random field, Proc IEEE Int Conf Comput Vis, 1377

10.1145/2063576.2064004

10.1007/978-3-319-10404-1_68

mostajabi, 2014, Feedforward semantic segmentation with zoom-out features, arXiv preprint arXiv 1412 0774

10.1109/TPAMI.2012.231