Decreased glycolysis induced dysfunction of NK cells in Henoch-Schonlein purpura patients
Tóm tắt
Henoch-Schonlein purpura (HSP) is the most common systemic vasculitis of the childhood. However, its mechanisms and pathogenesis still need more exploration. Natural killer (NK) cells are innate lymphocytes, and there is a growing appreciation that cellular metabolism is important in determining the immune responsiveness of lymphocytes. Thus, we aimed to analyze the NK cells phenotype and explore the association between glucose metabolism and NK cells function in HSP patients. A total number of 64 HSP patients and 34 healthy children were included. The HSP patients were divided into two groups according to whether accompanied with nephritis or not. NK cells in HSP patients without nephritis showed a reduced frequency in peripheral blood, a down-regulated expression of activating receptors both NKp30 and NKp46, and an attenuated cytotoxic function against tumor cells. In addition, the function impairment of NK cells was shown to exacerbate in HSPN. Our data further revealed an aberrant metabolic reprogramming of NK cells in HSP patients. Upon stimulation with cytokines (IL-15, IL-12 and IL-2), NK cells from healthy controls switched to an elevated glycolysis rate to support their effector function. By contrast, the glycolysis rate of activated NK cells in HSP group was not significantly up-regulated from the resting level possibly owing to the inhibition of mTORC1. Our study found that HSP patients were accompanied with dysfunction of NK cells. We concluded that the dysfunction of NK cells in HSP patients was induced with a decreased glycolysis rate and suggested that metabolic reprogramming of NK cells might be a player in the pathogenesis of HSP.
Tài liệu tham khảo
Ballinger S. Henoch-Schonlein purpura. Curr Opin Rheumatol. 2003;15(5):591–4.
Chen JY, Mao JH. Henoch-Schonlein purpura nephritis in children: incidence, pathogenesis and management. World J Pediatr. 2015;11(1):29–34.
Rai A, Nast C, Adler S. Henoch-Schonlein purpura nephritis. J Am Soc Nephrol. 1999;10(12):2637–44.
Pohl M. Henoch-Schonlein purpura nephritis. Pediatr Nephrol. 2015;30(2):245–52.
Heineke MH, Ballering AV, Jamin A, Ben Mkaddem S, Monteiro RC, Van Egmond M. New insights in the pathogenesis of immunoglobulin a vasculitis (Henoch-Schonlein purpura). Autoimmun Rev. 2017;16(12):1246–53.
Rigante D, Castellazzi L, Bosco A, Esposito S. Is there a crossroad between infections, genetics, and Henoch-Schonlein purpura? Autoimmun Rev. 2013;12(10):1016–21.
Tizard EJ, Hamilton-Ayres MJ. Henoch Schonlein purpura. Arch Dis Child Educ Pract Ed. 2008;93(1):1–8.
Saulsbury FT. Alterations in the O-linked glycosylation of IgA1 in children with Henoch-Schonlein purpura. J Rheumatol. 1997;24(11):2246–9.
Davin JC, Coppo R. Henoch-Schonlein purpura nephritis in children. Nat Rev Nephrol. 2014;10(10):563–73.
Jen HY, Chuang YH, Lin SC, Chiang BL, Yang YH. Increased serum interleukin-17 and peripheral Th17 cells in children with acute Henoch-Schonlein purpura. Pediatr Allergy Immunol. 2011;22(8):862–8.
Yang YH, Huang YH, Lin YL, Wang LC, Chuang YH, Yu HH, Lin YT, et al. Circulating IgA from acute stage of childhood Henoch-Schonlein purpura can enhance endothelial interleukin (IL)-8 production through MEK/ERK signalling pathway. Clin Exp Immunol. 2006;144(2):247–53.
Yang YH, Wang SJ, Chuang YH, Lin YT, Chiang BL. The level of IgA antibodies to human umbilical vein endothelial cells can be enhanced by TNF-alpha treatment in children with Henoch-Schonlein purpura. Clin Exp Immunol. 2002;130(2):352–7.
Lin CY, Yang YH, Lee CC, Huang CL, Wang LC, Chiang BL. Thrombopoietin and interleukin-6 levels in Henoch-Schonlein purpura. J Microbiol Immunol Infect. 2006;39(6):476–82.
Li YY, Li CR, Wang GB, Yang J, Zu Y. Investigation of the change in CD4(+) T cell subset in children with Henoch-Schonlein purpura. Rheumatol Int. 2012;32(12):3785–92.
Chen O, Zhu XB, Ren H, Wang YB, Sun R. The imbalance of Th17/Treg in Chinese children with Henoch-Schonlein purpura. Int Immunopharmacol. 2013;16(1):67–71.
Gulhan B, Orhan D, Kale G, Besbas N, Ozen S. Studying cytokines of T helper cells in the kidney disease of IgA vasculitis (Henoch-Schonlein purpura). Pediatr Nephrol. 2015;30(8):1269–77.
Vivier E, Tomasello E, Baratin M, Walzer T, Ugolini S. Functions of natural killer cells. Nat Immunol. 2008;9(5):503–10.
Fogler WE, Volker K, McCormick KL, Watanabe M, Ortaldo JR, Wiltrout RH. NK cell infiltration into lung, liver, and subcutaneous B16 melanoma is mediated by VCAM-1/VLA-4 interaction. J Immunol. 1996;156(12):4707–14.
Coppo R, Amore A. Aberrant glycosylation in IgA nephropathy (IgAN). Kidney Int. 2004;65(5):1544–7.
Iwatani H, Nagasawa Y, Yamamoto R, Iio K, Mizui M, Horii A, Kitahara T, et al. CD16+CD56+ cells are a potential culprit for hematuria in IgA nephropathy. Clin Exp Nephrol. 2015;19(2):216–24.
Kimata H, Sherr EH, Saxon A. Human natural killer (NK) cells produce a late-acting B-cell differentiation activity. J Clin Immunol. 1988;8(5):381–9.
Mota G, Manciulea M, Cosma E, Popescu I, Hirt M, Jensen-Jarolim E, Calugaru A, et al. Human NK cells express fc receptors for IgA which mediate signal transduction and target cell killing. Eur J Immunol. 2003;33(8):2197–205.
Komiyama K, Moro I, Crago SS, Mestecky J. Inhibition of natural killer (NK) activity by human colostral and serum IgA. Adv Exp Med Biol. 1987;216A:539–42.
Trinchieri G. Biology of natural killer cells. Adv Immunol. 1989;47:187–376.
Pearce EL, Pearce EJ. Metabolic pathways in immune cell activation and quiescence. Immunity. 2013;38(4):633–43.
Donnelly RP, Loftus RM, Keating SE, Liou KT, Biron CA, Gardiner CM, Finlay DK. mTORC1-dependent metabolic reprogramming is a prerequisite for NK cell effector function. J Immunol. 2014;193(9):4477–84.
Keating SE, Zaiatz-Bittencourt V, Loftus RM, Keane C, Brennan K, Finlay DK, Gardiner CM. Metabolic reprogramming supports IFN-gamma production by CD56bright NK cells. J Immunol. 2016;196(6):2552–60.
Marcais A, Cherfils-Vicini J, Viant C, Degouve S, Viel S, Fenis A, Rabilloud J, et al. The metabolic checkpoint kinase mTOR is essential for IL-15 signaling during the development and activation of NK cells. Nat Immunol. 2014;15(8):749–57.
Keppel MP, Saucier N, Mah AY, Vogel TP, Cooper MA. Activation-specific metabolic requirements for NK cell IFN-gamma production. J Immunol. 2015;194(4):1954–62.
Wang Z, Guan D, Wang S, Chai LYA, Xu S, Lam KP. Glycolysis and oxidative phosphorylation play critical roles in natural killer cell receptor-mediated natural killer cell functions. Front Immunol. 2020;11:202.
Michelet X, Dyck L, Hogan A, Loftus RM, Duquette D, Wei K, Beyaz S, et al. Metabolic reprogramming of natural killer cells in obesity limits antitumor responses. Nat Immunol. 2018;19(12):1330–40.
Tobin LM, Mavinkurve M, Carolan E, Kinlen D, O'Brien EC, Little MA, Finlay DK, et al. NK cells in childhood obesity are activated, metabolically stressed, and functionally deficient. JCI Insight. 2017;2(24):e94939.
Cichocki F, Wu CY, Zhang B, Felices M, Tesi B, Tuininga K, Dougherty P, et al. ARID5B regulates metabolic programming in human adaptive NK cells. J Exp Med. 2018;215(9):2379–95.
Pan YX, Ye Q, Shao WX, Shang SQ, Mao JH, Zhang T, Shen HQ, et al. Relationship between immune parameters and organ involvement in children with Henoch-Schonlein purpura. PLoS One. 2014;9(12):e115261.
Cooper MA, Fehniger TA, Caligiuri MA. The biology of human natural killer-cell subsets. Trends Immunol. 2001;22(11):633–40.
Gardiner CM, Finlay DK. What fuels natural killers? Metabolism and NK cell responses. Front Immunol. 2017;8:367.
Lunt SY, Vander Heiden MG. Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu Rev Cell Dev Biol. 2011;27:441–64.
Donnelly RP, Finlay DK. Glucose, glycolysis and lymphocyte responses. Mol Immunol. 2015;68(2 Pt C):513–9.
Laplante M, Sabatini DM. mTOR signaling in growth control and disease. Cell. 2012;149(2):274–93.
Trapani S, Micheli A, Grisolia F, Resti M, Chiappini E, Falcini F, De Martino M. Henoch Schonlein purpura in childhood: epidemiological and clinical analysis of 150 cases over a 5-year period and review of literature. Semin Arthritis Rheum. 2005;35(3):143–53.
Caligiuri MA. Human natural killer cells. Blood. 2008;112(3):461–9.
Xiong LJ, Tong Y, Wang ZL, Mao M. Is helicobacter pylori infection associated with Henoch-Schonlein purpura in Chinese children? A meta-analysis. World J Pediatr. 2012;8(4):301–8.
Yang M, Li FG, Xie XS, Wang SQ, Fan JM. CagA, a major virulence factor of helicobacter pylori, promotes the production and underglycosylation of IgA1 in DAKIKI cells. Biochem Biophys Res Commun. 2014;444(2):276–81.
Saulsbury FT. Henoch-Schonlein purpura in children. Report of 100 patients and review of the literature. Medicine (Baltimore). 1999;78(6):395–409.
Blanca IR, Bere EW, Young HA, Ortaldo JR. Human B cell activation by autologous NK cells is regulated by CD40-CD40 ligand interaction: role of memory B cells and CD5+ B cells. J Immunol. 2001;167(11):6132–9.
Luo S, Liang G, Zhang P, Zhao M, Lu Q. Aberrant histone modifications in peripheral blood mononuclear cells from patients with Henoch-Schonlein purpura. Clin Immunol. 2013;146(3):165–75.
Malek TR. The biology of interleukin-2. Annu Rev Immunol. 2008;26:453–79.
Masuda M, Nakanishi K, Yoshizawa N, Iijima K, Yoshikawa N. Group a streptococcal antigen in the glomeruli of children with Henoch-Schonlein nephritis. Am J Kidney Dis. 2003;41(2):366–70.
Carrega P, Bonaccorsi I, Di Carlo E, Morandi B, Paul P, Rizzello V, Cipollone G, et al. CD56(bright) perforin (low) noncytotoxic human NK cells are abundant in both healthy and neoplastic solid tissues and recirculate to secondary lymphoid organs via afferent lymph. J Immunol. 2014;192(8):3805–15.
Turner JE, Rickassel C, Healy H, Kassianos AJ. Natural killer cells in kidney health and disease. Front Immunol. 2019;10:587.
Irabu H, Shimizu M, Kaneko S, Inoue N, Mizuta M, Tasaki Y, Ohta K, et al. Apoptosis inhibitor of macrophage as a biomarker for disease activity inJapanese children with IgA nephropathy and Henoch-Schonlein purpura nephritis. Pediatr Research. 2020 May 14. https://doi.org/10.1038/s41390-020-0951-1.
Yuan L, Wang Q, Zhang S, Zhang L. Correlation between serum inflammatory factors TNF-alpha, IL-8, IL-10 and Henoch-Schonlein purpura with renal function impairment. Exp Ther Med. 2018;15(4):3924–8.
Wensveen FM, Jelencic V, Valentic S, Sestan M, Wensveen TT, Theurich S, Glasner A, et al. NK cells link obesity-induced adipose stress to inflammation and insulin resistance. Nat Immunol. 2015;16(4):376–85.
Lee BC, Kim MS, Pae M, Yamamoto Y, Eberle D, Shimada T, Kamei N, et al. Adipose natural killer cells regulate adipose tissue macrophages to promote insulin resistance in obesity. Cell Metab. 2016;23(4):685–98.
Zhou H, Xie X, Jiang B, Ke C. NKp46+ lamina propria natural killer cells undergo metabolic reprogramming in a mouse experimental colitis model. Inflamm Res. 2020;69(4):401–14.
Chang CH, Curtis JD, Maggi LB Jr, Faubert B, Villarino AV, O'Sullivan D, Huang SC, et al. Posttranscriptional control of T cell effector function by aerobic glycolysis. Cell. 2013;153(6):1239–51.
Schafer JR, Salzillo TC, Chakravarti N, Kararoudi MN, Trikha P, Foltz JA, Wang R, et al. Education-dependent activation of glycolysis promotes the cytolytic potency of licensed human natural killer cells. J Allergy Clin Immunol. 2019;143(1):346–58 e6.
Pfeifer C, Highton AJ, Peine S, Sauter J, Schmidt AH, Bunders MJ, Altfeld M, et al. Natural killer cell education is associated with a distinct glycolytic profile. Front Immunol. 2018;9:3020.
Miranda D, Jara C, Ibanez J, Ahumada V, Acuna-Castillo C, Martin A, Cordova A, et al. PGC-1alpha-dependent mitochondrial adaptation is necessary to sustain IL-2-induced activities in human NK cells. Mediat Inflamm. 2016;2016:9605253.
Assmann N, O'Brien KL, Donnelly RP, Dyck L, Zaiatz-Bittencourt V, Loftus RM, Heinrich P, et al. Srebp-controlled glucose metabolism is essential for NK cell functional responses. Nat Immunol. 2017;18(11):1197–206.
Loftus RM, Assmann N, Kedia-Mehta N, O'Brien KL, Garcia A, Gillespie C, Hukelmann JL, et al. Amino acid-dependent cMyc expression is essential for NK cell metabolic and functional responses in mice. Nat Commun. 2018;9(1):2341.
Ruperto N, Ozen S, Pistorio A, Dolezalova P, Brogan P, Cabral DA, Cuttica R, et al. EULAR/PRINTO/PRES criteria for Henoch-Schonlein purpura, childhood polyarteritis nodosa, childhood Wegener granulomatosis and childhood Takayasu arteritis: Ankara 2008. Part I: overall methodology and clinical characterisation. Ann Rheum Dis. 2010;69(5):790–7.