Decreased cultured endothelial cell proliferation in high glucose medium is reversed by antioxidants: New insights on the pathophysiological mechanisms of diabetic vascular complications

In Vitro Cellular & Developmental Biology - Animal - Tập 28 Số 11-12 - Trang 787-790 - 1992
Francesco Curcio1, Antonio Ceriello2
1Istituto di Patologia Clinica e Sperimentale, Istituto di Scienze Mediche, Faculty of Medicine, University of Udine, Udine, Italy
2Cattedra di Medicina Interna, Istituto di Scienze Mediche, Faculty of Medicine, University of Udine, Udine, Italy

Tóm tắt

Từ khóa


Tài liệu tham khảo

Andreoli, S. P.; McAteer, J. A. Reactive oxygen molecule-mediated injury in endothelial and renal tubular epithelial cells in vitro. Kidney Intern 38:785–794; 1990.

Baish, H.; Gohde, W.; Linden, W. Analysis of PCP-date to determine the fractions of cell in the various phase of cell cycle. Radiat. Environ. Biophys. 12:31–42; 1975.

Baynes, J. W. Role of oxidative stress in development of complications in diabetes. Diabetes 40:405–412; 1991.

Bellomo, G.; Mirabelli, F.; Di Monte, D., et al. Formation and reduction of glutathione-protein mixed disulfide during oxidative stress. A study with isolated hepatocytes and menadione (2-methyl-1,4-napthoquinone). Biochem. Pharmacol. 36:1313–1319; 1987.

Borg, L. A. H.; Eriksson, V. J. Protection by free radical scavenging enzymes against glucose-induced embryonic malformations in vitro. Diabetologia 34:325–331; 1991.

CellFIT Software User’s Guide, May 1990, Becton Dickinson.

Ceriello, A.; Giugliano, D.; Quatraro, A., et al. Metabolic control may influence the increased superoxide generation in diabetic serum. Diabetic Medicine 8:540–542; 1991.

Di Monte, D.; Ross, D.; Bellomo, G., et al. Alterations in intracellular thiol homeostasis during the metabolism of menadione by isolated rat hepatocytes. Arch. Biochem. Biophys. 235:334–342; 1984.

Di Monte, D.; Bellomo, G.; Thor, H., et al. Menadione-induced cytotoxicity is associated with protein thiol oxidation and alteration in intracellular Ca2+ homeostasis. Arch. Biochem. Biophys. 235:343–350; 1984.

Fridovich, I. The biology of oxygen radicals. The superoxide radical is an agent of oxygen toxicity; superoxide dismutase provide an important defense. Science 201:875–880; 1978.

Halliwell, B.; Gutteridge, J. M. C. Lipid peroxidation, oxygen radicals, cell damage and antioxidants therapy. Lancet 1:1396–1397; 1984.

Hardenschild, C. C. Biology of endothelial cells. In: Jaffe, E. A., ed. Boston: Nijhoff; 1984:129–140.

Hunt, J. V.; Dean, R. T.; Wolff, S. P. Hydroxyl radical production and autoxidative glycosylation. Glucose autoxidation as the cause of protein damage in the experimental glycation model of diabetes mellitus and aging. Biochem. J. 256:205–212; 1988.

Jones, D. P.; Eklow, L.; Thor, H., et al. Metabolism of hydrogen peroxide in isolated hepatocytes: relative contributions of catalase and glutathione peroxidase in decomposition of endogenously-generated H2O2. Arch. Biochem. Biophys. 210:505–513; 1981.

Lorenzi, M.; Cagliero, E.; Toledo, S. Glucose toxicity for human endothelial cells in culture. Diabetes 34:621–627; 1985.

Lorenzi, M.; Nordberg, J. A.; Toledo, S. High glucose prolongs cell cycle traversal of cultured human endothelial cells. Diabetes 36:1261–1267; 1987.

Lorenzi, M.; Cagliero, E.; Markey, B., et al. Interaction of human endothelial cells with elevated glucose concentrations and native and glycosylated low density lipoproteins. Diabetologia. 26:218–222; 1984.

Mello Filho, A. C.; Hoffman, M. E.; Menghini, R. Cell killing and DNA damage by hydrogen peroxide are mediated by intracellular iron. Biochem. J. 218:273–280; 1984.

Mizrachi, Y.; Lelkes, P. J.; Ornberg, L. R., et al. Specific adhesion between pheocromocytoma (PC12 cells) and adrenal medullary endothelial cells in co-culture. Cell Tissue Res. 256:356–372; 1989.

Nicotera, P.; Moore, M.; Bellomo, G., et al. Demonstration and partial characterization of the glutathione disulfide-stimulated ATPase activity in the plasmamembrane fraction from rat hepatocytes. J. Biol. Chem. 260:1999–2005; 1985.

Oberley, L. W. Free radicals and diabetes. Free Rad. Biol. Med. 5:113–124; 1988.

Platt, J. T.; Michel, A. F. Retardation of fading and enhancement of intensity of immunofluorescence by p-phenylendiamine. J. Histochem. Cytochem. 31:840–842; 1983.

Rajeswari, P.; Natarajan, R.; Nadler, J. L., et al. Glucose induces lipid peroxidation and inactivation of membrane-associated ion transport enzymes in erythrocytes in vivo and vitro. Diabetes 40 (suppl.):10A; 1991.

Sato, Y.; Holta, N.; Sakamoto, N., et al. Lipid peroxide levels in serum of diabetic patients. Biochem. Med. 21:104–107; 1979.

Stortz, H.; Jelke, E. Photomicrography of weakly fluorescent objects —employment of p-phenylene diamine as a blocker of fading. Acta Histochem. 75:133–139; 1984.

Streeten, E. A.; Curcio, F.; Ornberg, R. L., et al. Cloned endothelial cells from fetal bovine bone. Proc. Natl. Acad. Sci. USA 86:916–920; 1989.

Wayne, W. D. Biostatistics: a foundation for analysis in the health sciences, 3rd ed. New York, NY: John Wiley & Sons; 1983:230–237.

Wilbur, K. M.; Wolfson, N.; Keneston, C. B., et al. Inhibition of cell division by ultraviolet irradiated unsaturated fatty acid. Exp. Cell Res. 13:503–509; 1957.

Wolff, S. P.; Dean, R. T. Glucose autoxidation and protein modification. The potential role of ‘autoxidative’ glycosylation in diabetes. Biochem. J. 245:243–250; 1987.

Wolfson, N.; Wilbur, K. M.; Beruheim, F. Lipid peroxide formation in regenerating rat liver. Exp. Cell Res. 10:556–558; 1956.