Decorating non-noble metal plasmonic Al on a TiO2/Cu2O photoanode to boost performance in photoelectrochemical water splitting

Chinese Journal of Catalysis - Tập 41 - Trang 1884-1893 - 2020
Shaoce Zhang, Zhifeng Liu1,2, Weiguo Yan2, Zhengang Guo1,2, Mengnan Ruan1,2
1School of Materials Science and Engineering, Tianjin Chengjian University, Tianjin, 300384, China
2Tianjin Key Laboratory of Building Green Functional Materials, Tianjin Chengjian University, Tianjin, 300384, China

Tài liệu tham khảo

Fujishima, 1972, Nature, 238, 37, 10.1038/238037a0 Wei, 2017, ACS Sustain. Chem. Eng., 5, 4249, 10.1021/acssuschemeng.7b00242 Chen, 2020, Appl. Catal. B, 265 Li, 2019, ACS Sustain. Chem. Eng., 7, 12582 Salehmin, 2018, Sol. Energy Mater. Sol. Cells, 182, 237, 10.1016/j.solmat.2018.03.042 Liu, 2018, ACS Sustain. Chem. Eng., 6, 10289, 10.1021/acssuschemeng.8b01607 Zhou, 2020, Appl. Catal. B Guo, 2014, Appl. Catal. B, 154, 27, 10.1016/j.apcatb.2014.02.004 Elbakkay, 2018, Appl. Surf. Sci., 439, 1088, 10.1016/j.apsusc.2018.01.070 Liu, 2017, ACS Appl. Mater. Interfaces, 9, 27185, 10.1021/acsami.7b07047 Pu, 2013, Nano Lett., 13, 3817, 10.1021/nl4018385 Liu, 2014, ACS Appl. Mater. Interfaces, 6, 17200, 10.1021/am505015j Ai, 2015, Adv. Funct. Mater., 25, 5706, 10.1002/adfm.201502461 Seabold, 2008, Chem. Mater., 20, 5266, 10.1021/cm8010666 Chandra, 2018, Inorg. Chem., 57, 4524, 10.1021/acs.inorgchem.8b00283 Yang, 2017, Sol. Energy Mater. Sol. Cells, 165, 27, 10.1016/j.solmat.2017.02.026 Tolstova, 2017, Sol. Energy Mater. Sol. Cells, 160, 340, 10.1016/j.solmat.2016.10.049 Wang, 2013, Energy Environ. Sci., 6, 1211, 10.1039/c3ee24162a Zhou, 2018, Nano Energy, 50, 118, 10.1016/j.nanoen.2018.05.028 Ma, 2018, Inorg. Chem. Front., 5, 2571, 10.1039/C8QI00596F Saraswat, 2018, Renew. Sust. Energy Rev., 89, 228, 10.1016/j.rser.2018.03.063 Clavero, 2014, Nature Photon., 8, 95, 10.1038/nphoton.2013.238 Tian, 2005, J. Am. Chem. Soc., 127, 7632, 10.1021/ja042192u Chaudhary, 2017, Int. J. Hydrogen Energy, 42, 7826, 10.1016/j.ijhydene.2016.12.036 Knight, 2013, ACS Nano, 8, 834, 10.1021/nn405495q Chen, 2020, Chem. Eng. J., 381 Li, 2018, Nano Energy, 51, 400, 10.1016/j.nanoen.2018.06.083 Liu, 2014, Small, 10, 3153, 10.1002/smll.201400622 Chen, 2018, J. Mater. Chem. A, 6, 20393, 10.1039/C8TA07503D She, 2019, Chem. Eng. J. Wei, 2019, Appl. Catal. B, 259, 10.1016/j.apcatb.2019.118084 Zheng, 2018, Appl. Catal. B, 239, 475, 10.1016/j.apcatb.2018.08.031 Suryawanshi, 2018, J. Mater. Chem. A, 6, 20678, 10.1039/C8TA07343K Zhu, 2019, Appl. Surf. Sci., 493, 913, 10.1016/j.apsusc.2019.07.119 Ma, 2018, Appl. Catal. B, 227, 218, 10.1016/j.apcatb.2018.01.031 Zheng, 2018, Chem. Commun., 54, 9583, 10.1039/C8CC04199G Yu, 2016, ACS Catal, 6, 6444, 10.1021/acscatal.6b01455 Zhang, 2020, Appl. Catal. B, 262 Pan, 2016, Nano Energy, 28, 296, 10.1016/j.nanoen.2016.08.054 Yuan, 2016, ACS Appl. Mater. Interfaces, 8, 6082, 10.1021/acsami.6b00030 Parkinson, 1984, Acc. Chem. Res., 17, 431, 10.1021/ar00108a004 Wang, 2019, Chin. J. Catal., 40, 343, 10.1016/S1872-2067(18)63157-2 Liu, 2018, Int. J. Hydrogen Energy, 43, 13276, 10.1016/j.ijhydene.2018.05.117 Zhu, 2019, Chin. J. Catal., 40, 413, 10.1016/S1872-2067(18)63182-1 Long, 2017, Environ. Sci. Technol., 51, 514, 10.1021/acs.est.6b04845 Chen, 2018, ChemSusChem, 11, 3438, 10.1002/cssc.201801614 He, 2018, J. Mater. Chem. A, 6, 13110, 10.1039/C8TA03048K He, 2019, J. Colloid Interface Sci., 557, 644, 10.1016/j.jcis.2019.09.035 Zheng, 2019, J. Phys. Chem., C, 123, 13693, 10.1021/acs.jpcc.9b02311 Ye, 2019, Int. J. Hydrogen Energy, 44, 21865, 10.1016/j.ijhydene.2019.06.059 Li, 2019, Chin. J. Catal., 40, 424, 10.1016/S1872-2067(18)63183-3 Liu, 2018, ACS Sustain. Chem. Eng., 6, 3565, 10.1021/acssuschemeng.7b03894 Shen, 2019, Chin. J. Catal., 40, 380, 10.1016/S1872-2067(18)63166-3 Rao, 2019, J. Phys. Chem. C, 123, 16268, 10.1021/acs.jpcc.9b03961 Lu, 2018, ACS Sustain. Chem. Eng., 6, 13140, 10.1021/acssuschemeng.8b02653 Paracchino, 2011, Nat. Mater., 10, 456, 10.1038/nmat3017