Decompositions of trigonometric polynomials with applications to multivariate subdivision schemes

Springer Science and Business Media LLC - Tập 38 Số 2 - Trang 321-349 - 2013
Nira Dyn1, M. Skopina2
1Tel Aviv University Tel Aviv, Israel
2St. Petersburg State University, St. Petersburg, Russia

Tóm tắt

Từ khóa


Tài liệu tham khảo

Cohen, A., Gröchenig, K., Villemoes, L.F.: Regularity of multivariate refinable functions. Constr. Approx. 15(2), 241–255 (1999)

Cavaretta, A.S., Dahmen, W., Micchelli, C.A.: Stationary subdivision. Mem. Am. Math. Soc. 93(453), vi+186 (1991)

Charina, M.: Vector multivariate subdivisio0n schemes: comparison of spectral methods for their regularity analysis. Appl. Comput. Harmon. Anal. (2011, in press)

Chen, D.-R., Jia, R.-Q., Riemenschneider, S.D.: Convergence of vector subdivision schemes in Sobolev spaces. Appl. Comput. Harmon. Anal. 12(1), 128–149 (2002)

Dyn, N.: Subdivision schemes in computer aided geometric design. In: Light, W. (ed.) Advances in Numerical Analysis, vol. II. Wavelets, Subdivision Algorithms and Radial Basis Functions, pp. 36–104. Clarendon Press, Oxford (1992)

Jia, R.Q.: Approximation properties of multivariate wavelets. Math. Comput. 67, 647–655 (1998)

Han, B.: Computing the smoothness exponent of a symmetric multivariate refinable function. SIAM J. Matrix Anal. Appl. 24, 693–714 (2003)

Han, B.: Compactly supported tight wavelet frames and orthonormal wavelets of exponential decay with a general dilation matrix. J. Comput. Appl. Math. 155, 43–67 (2003)

Han, B.: Vector cascade algorithms and refinable function vector in Sobolev spaces. J. Approx. Theory 124, 44–88 (2003)

Han, B., Jia, R.-Q.: Multivariate refinement equations and convergence of subdivision schemes. SIAM J. Math. Anal. 29(5), 1177–1999 (1998)

Latour, V., Müller, J., Nickel, W.: Stationry subdivision for general scaling matrices. Math. Z. 227, 645–661 (1998)

Möller, H.M., Sauer, T.: Multivariate refinable functions of high approximation order via quotient ideals of Laurent polynomials. Adv. Comput. Math. 20(1–3), 205–228 (2004)

Novikov, I.Ya., Protasov, V.Yu., Skopina, M.A.: Wavelet theory. In: Translations Mathematical Monographs, vol. 239. AMS, Providence (2011)

Sauer, T.: How to generate smoother refinable functions from given one In: Haussmann, W., Jetter, K., Reimer, M., Stökler, J. (eds.) Modern Developments in Multivariate Approximation. International Series of Numerical Mathematics, vol. 145, pp. 279–294 (2003)

Sauer, T.: Differentiability of multivariate refinable functions and factorization. Adv. Comput. Math. 26(1–3), 211–235 (2006)

Skopina, M.: On construction of multivariate wavelets with vanishing moments. ACHA 20(3), 375–390 (2006)

Wojtaszczyk, P.: A mathematical introduction to wavelets. Lond. Math. Soc. Stud. Texts, vol. 37, xii+261 pp. Cambridge University Press, Cambridge (1997)

Zhou, D.-X.: Norms concerning subdivision sequences and their// applications in wavelets. Appl. Comput. Harmon. Anal. 11(3), 329–346 (2001)