Decompositions of minimum rank matrices

Linear Algebra and Its Applications - Tập 438 - Trang 3913-3948 - 2013
Wayne Barrett1, Mark Kempton2, Nicole Malloy3, Curtis Nelson3, William Sexton3, John Sinkovic
1Department of Mathematics, Brigham Young University, Provo, UT 84602, United States
2University of California, San Diego, United States
3Brigham Young University, United States

Tài liệu tham khảo

Barioli, 2004, Computation of minimal rank and path cover number for certain graphs, Linear Algebra Appl., 392, 289, 10.1016/j.laa.2004.06.019 Barrett, 2011, The inverse eigenvalue and inertia problems for minimum rank two graphs, Electron. J. Linear Algebra, 22, 389, 10.13001/1081-3810.1445 Barrett, 2009, The minimum rank problem over the finite field of order 2: minimum rank 3, Linear Algebra Appl., 430, 890, 10.1016/j.laa.2008.08.025 Barrett, 2009, The inverse inertia problem for graphs: cut vertices, trees, and a counterexample, Linear Algebra Appl., 431, 1147, 10.1016/j.laa.2009.04.007 van der Holst, 2008, The maximum corank of graphs with a 2-separation, Linear Algebra Appl., 428, 1587, 10.1016/j.laa.2007.10.005 van der Holst, 2009, On the maximum positive semi-definite nullity and the cycles matroid of graphs, Electron. J. Linear Algebra, 18, 192, 10.13001/1081-3810.1304 L.-Y. Hsieh, On minimum rank matrices having prescribed graph, Ph.D. thesis, University of Wisconsin, Madison, 2001. Nylen, 1996, Minimum-rank matrices with prescribed graph, Linear Algebra Appl., 248, 303, 10.1016/0024-3795(95)00238-3