Decomposition process of organic matter derived from freshwater phytoplankton

Limnology - Tập 9 - Trang 57-69 - 2008
Yuji Hanamachi1, Takeo Hama1, Takanori Yanai2
1Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
2Ibaraki Prefectural Freshwater Fisheries Experimental Station, Ibaraki, Japan

Tóm tắt

We investigated the biodegradation process of freshwater phytoplanktonic organic matter using incubation experiments, with special reference to changes in three major biomolecules: neutral aldoses, amino acids and fatty acids. The concentration of neutral aldoses decreased drastically relative to amino acids and fatty acids during the early decomposition phase (days 0–7), owing largely to the rapid decomposition of storage carbohydrate. This resulted in a temporary decrease in the C/N ratio of organic matter. During the late phase (days 7–60), however, the rate of decrease in neutral aldoses slowed, while the considerable decrease in amino acids and fatty acids continued. The inconspicuous change in amino acid composition was probably due to the fact that no protein and/or peptide is composed of a limited species of amino acid. Although the compositional variety of organic matter among the phytoplankton was clearly observed at the start of decomposition, it became obscure in the course of 60 days. This indicates that while the organic composition of the labile fraction of phytoplanktonic organic matter varies depending on the phytoplankton groups, the refractory fraction has similar composition. The addition of bacterial organic matter is likely another reason for the similar composition of the remaining organic matter at day 60.

Tài liệu tham khảo

Amon RMW, Fitznar H, Benner R (2001) Linkages among the bioreactivity, chemical composition, and diagenetic state of marine dissolved organic matter. Limnol Oceanogr 46:287–297 Aruga Y (1979) Measurement of standing crop. In: Nishizawa K, Chihara M (eds) Methods in phycological studies (in Japanese). Kyoritsu Shuppan, Japan, pp 388–412 Balzer W (1984) Organic matter degradation and biogenic element cycling in a nearshore sediment (Kiel Bight). Limnol Oceanogr 29:1231–1246 Benner R (2002) Chemical composition and reactivity. In: Hansell DA, Carlson CA (eds) Biogeochemistry of marine dissolved organic matter. Academic Press, New York, pp 59–90 Cowie GL, Hedges JI (1984) Carbohydrate sources in a coastal marine environment. Geochim Cosmochim Acta 48:2075–2087 Cowie GL, Hedges JI (1992) Sources and reactivities of amino acids in a coastal marine environment. Limnol Oceanogr 37:703–724 Craigie JS (1974) Storage products. In: Stewart WDP (ed) Algal physiology and biochemistry. Blackwell, Oxford, pp 206–235 del Giorgio PA, Cole JJ (1998) Bacterial growth efficiency in natural aquatic systems. Annu Rev Ecol Syst 29:503–541 Fujii M, Murashige S, Ohnishi Y, Yuzawa A, Miyasaka H, Suzuki Y, Komiyama H (2002) Decomposition of phytoplankton in seawater. Part 1: Kinetic analysis of the effect of organic matter concentration. J Oceanogr 58:433–438 Fukami K, Simidu U, Taga N (1985) Microbial decomposition of phyto- and zooplankton in seawater. I. Changes in organic matter. Mar Ecol Prog Ser 21:1–5 Furuya K (1990) Subsurface chlorophyll maximum in the tropical and subtropical western Pacific Ocean: vertical profiles of phytoplankton biomass and its relationship with chlorophyll a and particulate organic carbon. Mar Biol 107:529–539 Grutters M, Raaphorst W, Epping E, Helder W, Leeuw JW, Glavin DP, Bada J (2002) Preservation of amino acids from in situ-produced bacterial cell wall peptidoglycans in northeastern Atlantic continental margin sediments. Limnol Oceanogr 47:1521–1524 Hama J, Handa N (1992) Diel variation of water-extractable carbohydrate composition of natural phytoplankton populations in Kinu-ura Bay. J Exp Mar Biol Ecol 162:159–176 Hama T (1991) Production and turnover rates of fatty acids in marine particulate matter through phytoplankton photosynthesis. Mar Chem 33:213–227 Hama T (1999) Fatty acid composition of particulate matter and photosynthetic products in subarctic and subtropical Pacific. J Plankton Res 21:1355–1372 Hama T, Yanagi K (2001) Production and neutral aldose composition of dissolved carbohydrates excreted by natural marine phytoplankton populations. Limnol Oceanogr 46:1945–1955 Hama T, Matsunaga K, Handa N, Takahashi M (1992) Fatty acid composition in photosynthetic products of natural phytoplankton population in Lake Biwa, Japan. J Plankton Res 14:1055–1065 Hama T, Yanagi K, Hama J (2004) Decrease in molecular weight of photosynthetic products of marine phytoplankton during early diagenesis. Limnol Oceanogr 49:471–481 Hamanaka J, Tanoue E, Hama T, Handa N (2002) Production and export of particulate fatty acids, carbohydrates and combined amino acids in the euphotic zone. Mar Chem 77:55–69 Handa N, Yanagi K (1969) Studies on water-extractable carbohydrates of the particulate matter from the northwest Pacific Ocean. Mar Biol 4:197–207 Harvey HR, Macko SA (1997) Kinetics of phytoplankton decay during simulated sedimentation: changes in lipids under oxic and anoxic conditions. Org Geochem 27:129–140 Harvey HR, Tuttle JH, Bell JT (1995) Kinetics of phytoplankton decay during simulated sedimentation: changes in biochemical composition and microbial activity under oxic and anoxic conditions. Geochim Cosmochim Acta 59:3367–3377 Hecky RE, Mopper K, Kilham P, Degens ET (1973) The amino acid and sugar composition of diatom cell-walls. Mar Biol 19:323–331 Henderson JW, Ricker RD, Bidlingmeyer BA, Woodward C (2000) Rapid, accurate, sensitive, and reproducible HPLC analysis of amino acids. Agilent Technologies, USA (Agilent App Note 5980-1193E) Hernes PJ, Hedges JI, Peterson ML, Wakeham SG, Lee C (1996) Neutral carbohydrate geochemistry of particulate material in the central equatorial Pacific. Deep-Sea Res II 43:1181–1204 Hicks RE, Owen CJ, Aas P (1994) Deposition, resuspension, and decomposition of particulate organic matter in the sediments of Lake Itasca, Minnesota, USA. Hydrobiologia 284:79–91 Kitayama K, Hama T, Yanagi K (2007) Bioreactivity of peptidoglycan in seawater. Aquat Microb Ecol 46:85–93 Kuwata A, Hama T, Takahashi M (1993) Ecophysiological characterization of two life forms, resting spores and resting cells, of a marine planktonic diatom, Chaetoceros pseudocurvisetus, formed under nutrient depletion. Mar Ecol Prog Ser 102:245–255 Libes SM (1992) The production and destruction of organic compounds in the sea. In: Libes SM (ed) An introduction to marine biogeochemistry. Wiley, New York, pp 394–422 Mancuso CA, Franzmann PD, Burton HR, Nichols PD (1990) Microbial community structure and biomass estimates of a methanogenic antarctic lake ecosystem as determined by phospholipid analyses. Microb Ecol 19:73–95 Matsunaga K (1981) Studies on the decompositive processes of phytoplanktonic organic matter. Jap J Limnol 42:220–229 McCarthy MD, Hedges JI, Benner R (1998) Major bacterial contribution to Marine dissolved organic nitrogen. Science 281:231–234 Meckler AN, Schubert CJ, Cowie GL, Peiffer S, Dittrich M (2004) New organic matter degradation proxies: valid in lake systems? Limnol Oceanogr 49:2023–2033 Miyazaki T (1983) Compositional changes of fatty acids in particulate matter and water temperature, and their implications to the seasonal succession of phytoplankton in a hypereutrophic lake, Lake Kasumigaura, Japan. Arch Hydrobiol 99:1–14 Myklestad SM (1988) Production, chemical structure, metabolism, and biological function of the (1-3)-linked, β-D-glucans in diatoms. Biol Oceanogr 6:313–326 Napolitano GE (1998) Fatty acids as trophic and chemical markers in freshwater ecosystems. In: Arts MT, Wainman BC (eds) Lipids in freshwater ecosystems. Springer, New York, pp 21–44 Ogier S, Disnar J, Albéric P, Bourdier G (2001) Neutral carbohydrate geochemistry of particulate material (trap and core sediments) in an eutrophic lake (Aydat, France). Org Geochem 32:151–162 Olesen M, Lundsgaard C (1995) Seasonal sedimentation of autochthonous material from the euphotic zone of a coastal system. Estuar Coast Shelf Sci 41:475–490 Osinga R, de Vries KA, Lewis WE, van Raaphorst W, Dijkhuizen L, van Duyl FC (1997) Aerobic degradation of phytoplankton debris dominated by Phaeocystis sp. in different physiological stages of growth. Aquat Microb Ecol 12:11–19 Petit M, Alves GP, Lavandier P (1999) Phytoplanktonic exudation, bacterial reassimilation and production for three diel cycles in different trophic conditions. Arch Hydrobiol 146:285–309 Sakamoto M (1975) Trophic relation and metabolism in ecosystem. In: Mori S, Yamamoto G (eds) Productivity of communities in Japanese inland waters. University of Tokyo Press, Japan, pp 405–410 (JIBP-Synthesis, vol 10) Sato N, Murata N, Miura Y, Ueta N (1979) Effect of growth temperature on lipid and fatty acid compositions in the blue-green algae, Anabaena variabilis and Anacystis nidulans. Biochim Biophys Acta 572:19–28 Saunders GW, Cummins KW, Gak DZ, Pieczynska E, Straskrabova V, Wetzel RG (1980) Organic matter and decomposers. In: Le Cren ED, Lowe-McConnel RH (eds) The functioning of freshwater ecosystems. Cambridge University Press, Cambridge, pp 341–392 (IBP, vol 22) Schleifer KH, Kandler O (1972) Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36:407–477 SCOR/UNESCO (1966) Determination of photosynthetic pigments in seawater. UNESCO, Paris, pp 1–69 Skoog A, Benner R (1997) Aldoses in various size fractions of marine organic matter: Implications for carbon cycling. Limnol Oceanogr 42:1803–1813 Tanoue E, Nishiyama S, Kamo M, Tsugita A (1995) Bacterial membranes: Possible source of a major dissolved protein in seawater. Geochim Cosmochim Acta 59:2643–2648 Wakeham SG, Lee C (1993) Production, transport, and alteration of particulate organic matter in the marine water column. In: Engel MH, Macko SA (eds) Organic geochemistry. Plenum Press, New York, pp 145–169 Wakeham SG, Lee C, Hedges JI, Hernes PJ, Peterson ML (1997) Molecular indicators of diagenetic status in marine organic matter. Geochim Cosmochim Acta 61:5363–5369 Walsh K, Jones GJ, Dunstan RH (1997) Effect of irradiance on fatty acid, carotenoid, total protein composition and growth of Microcystis aeruginosa. Phytochemistry 44:817–824 Wetzel RG (1975) Organic carbon cycle and detritus. In: Wetzel RG (ed) Limnology. W. B. Saunders, Philadelphia, pp 538–621 Worobec EA, Martin NL, McCubbin WD, Kay CM, Brayer GD, Hancock REW (1988) Large-scale purification and biochemical characterization of crystallization-grade porin protein P from Pseudomonas aeruginosa. Biochim Biophys Acta 939:366–374