Decomposition and merging cooperative particle swarm optimization with random grouping for large-scale optimization problems

Alanna McNulty1, Beatrice M. Ombuki-Berman1, Andries P. Engelbrecht2
1Department of Computer Science, Brock University, St. Catharines, Canada
2Department of Industrial Engineering and Computer Science Division, Stellenbosch University, Stellenbosch, South Africa

Tóm tắt

Từ khóa


Tài liệu tham khảo

Alirezanejad, M., Enayatifar, R., Motameni, H., et al. (2021). GSA-LA: gravitational search algorithm based on learning automata. Journal of Experimental & Theoretical Artificial Intelligence, 33(1), 109–125. https://doi.org/10.1080/0952813X.2020.1725650

Barry, W. (2012). Generating Aesthetically Pleasing Images in a Virtual Environment using Particle Swarm Optimization. Master’s thesis, Brock University, http://hdl.handle.net/10464/4137

Clark, M., Ombuki-Berman, B., Aksamit, N., et al. (2022). Cooperative particle swarm optimization decomposition methods for large-scale optimization. In: IEEE Symposium Series on Computational Intelligence (IEEE SSCI 2022).

Cleghorn, C.W., & Engelbrecht, A.P. (2014). Particle Swarm Convergence: An Empirical Investigation. In: 2014 IEEE Congress on Evolutionary Computation (CEC). IEEE, pp 2524–2530, https://doi.org/10.1109/CEC.2014.6900439

Douglas, J. (2019). Effcient Merging and Decomposition Variants of Cooperative Particle Swarm Optimization for Large Scale Problems. Master’s thesis, Brock University, http://hdl.handle.net/10464/13876

Douglas, J., Engelbrecht, A.P., & Ombuki-Berman, B.M. (2018). Merging and Decomposition Variants of Cooperative Particle Swarm Optimization: New Algorithms for Large Scale Optimization Problems. In: Proceedings of the 2nd International Conference on Intelligent Systems, Metaheuristics & Swarm Intelligence. ACM, pp 70–77, https://doi.org/10.1145/3206185.3206199

Erwin, K., & Engelbrecht, A. (2020). Set-based particle swarm optimization for portfolio optimization. In: Proceedings of the 12th International Swarm Intelligence Conference (ANTS), Lecture Notes in Computer Science, vol 12421. Springer, p 333–339, https://doi.org/10.1007/978-3-030-60376-2_28

Hajihassani, M., Armaghani, D. J., & Kalatehjari, R. (2018). Applications of particle swarm optimization in geotechnical engineering: A comprehensive review. Geotechnical and Geolocigal Engineering, 36, 705–722. https://doi.org/10.1007/s10706-017-0356-z

Helwig, S., & Wanka, R. (2008). Theoretical Analysis of Initial Particle Swarm Behavior. In: Parallel Problem Solving from Nature - PPSN X, pp 889–898, https://doi.org/10.1007/978-3-540-87700-4_88

Hereford, J.M. (2006). A Distributed Particle Swarm Optimization Algorithm for Swarm Robotic Applications. In: IEEE International Congress on Evolutionary Computation. IEEE, pp 1678–1685, https://doi.org/10.1109/CEC.2006.1688510

Kennedy, J., & Eberhart, R. (1995). Particle Swarm Optimization. In: Proceedings of International Conference on Neural Networks, pp 1942–1948, https://doi.org/10.1109/ICNN.1995.488968

Khare, A., & Rangnekar, S. (2013). A review of particle swarm optimization and its applications in solar photovoltaic system. Applied Soft Computing, 13(5), 2997–3006. https://doi.org/10.1016/j.asoc.2012.11.033

Komarudin, & Chandra, A. (2019). Optimization of Very Large Scale Capacitated Vehicle Routing Problems. In: Proceedings of the 2019 5th International Conference on Industrial and Business Engineering, pp 18–22, https://doi.org/10.1145/3364335.3364389

Kruskal, W. H., & Wallis, W. A. (1952). Use of ranks in one-criterion variance analysis. Journal of the American Statistical Association, 47(260), 583–621. https://doi.org/10.1080/01621459.1952.10483441

Li, X., & Yao, X. (2012). Cooperatively coevolving particle swarms for large scale optimization. IEEE Transactions on Evolutionary Computation, 16(2), 210–224. https://doi.org/10.1109/TEVC.2011.2112662

Li, X., Tang, K., Omidvar, M.N. et al. (2013). Benchmark Functions for the CEC’2013 Special Session and Competition on Large-Scale Global Optimization.

Liu, B.n., Zhang, W.g., & Nie, R. (2012). An Improved Cooperative PSO Algorithm and its Application in the Flight Control System. In: International Conference on Automatic Control and Artificial Intelligence (ACAI 2012), pp 424–428, https://doi.org/10.1049/cp.2012.1007

Liu, L., Wang, Y., Xie, F., et al. (2018). Legendre cooperative PSO strategies for trajectory optimization. Complexity, 2018, 1–13. https://doi.org/10.1155/2018/5036791

Liu, Z., Shi, X., He, L., et al. (2020). A parameter-level parallel optimization algorithm for large-scale spatio-temporal data mining. Distributed and Parallel Databases, 38(3), 739–765. https://doi.org/10.1007/s10619-020-07287-x

Luna, F., Estébanez, C., León, C., et al. (2011). Optimization algorithms for large-scale real-world instances of the frequency assignment problem. Soft Computing, 15(5), 975–990. https://doi.org/10.1007/s00500-010-0653-4

Ma, K., Hu, S., Yang, J., et al. (2018). Appliances scheduling via cooperative multi-swarm PSO under day-ahead prices and photovoltaic generation. Applied Soft Computing, 62, 504–513. https://doi.org/10.1016/j.asoc.2017.09.021

Mann, H. B., & Whitney, D. R. (1947). On a test of whether one of two random variables is stochastically larger than the other. The Annals of Mathematical Statistics, 18(1), 50–60. https://doi.org/10.1214/aoms/1177730491

McNulty, A., Ombuki-Berman, B., & Engelbrecht, A. (2022). Decomposition and Merging Co-operative Particle Swarm Optimization with Random Grouping. In: Swarm Intelligence, pp 117–129, https://doi.org/10.1007/978-3-031-20176-9_10

Neethling, M., & Engelbrecht, A. (2006). Determining RNA Secondary Structure Using Set-Based Particle Swarm Optimization. In: Proceedings of the IEEE Congress on Evolutionary Computation, pp 1670–1677, https://doi.org/10.1109/CEC.2006.1688509

Oldewage, E.T. (2017). The Perils of Particle Swarm Optimization in High Dimensional Problem Spaces. Master’s thesis, University of Pretoria

Oldewage, E.T., Engelbrecht, A.P., Cleghorn, C.W. (2017). The Merits of Velocity Clamping Particle Swarm Optimisation in High Dimensional Spaces. In: Proceedings of the IEEE Symposium Series on Computational Intelligence, https://doi.org/10.1109/SSCI.2017.8280887

Oldewage, E.T., Engelbrecht, A.P., & Cleghorn, C.W. (2018). Boundary Constraint Handling Techniques for Particle Swarm Optimization in High Dimensional Problem Spaces. In: Swarm Intelligence. Cham: Springer International Publishing, p 333–341, https://doi.org/10.1007/978-3-030-00533-7_27

Oldewage, E. T., Engelbrecht, A. P., & Cleghorn, C. W. (2020). Movement patterns of a particle swarm in high dimensional spaces. Information Sciences, 512, 1043–1062. https://doi.org/10.1016/j.ins.2019.09.057

Omidvar, M.N., Li, X., Yang, Z., et al. (2010). Cooperative Co-evolution for Large Scale Optimization Through More Frequent Random Grouping. In: IEEE Congress on Evolutionary Computation, pp 1–8, https://doi.org/10.1109/CEC.2010.5586127

Pluhacek, M., Senkerik, R., Viktorin, A., et al. (2017). A Review of Real-World Applications of Particle Swarm Optimization Algorithm. In: Proceedings of the International Conference on Advanced Engineering Theory and Applications, pp 115–122, https://doi.org/10.1007/978-3-319-69814-4_11

Shi, Y., & Eberhart, R.C. (2005). Parameter Selection in Particle Swarm Optimization. In: Proceedings of Evolutionary Programming VII, pp 591–600, https://doi.org/10.1007/BFb0040810

Sopov, E., Vakhnin, A., Semenkin, E. (2018). On Tuning Group Sizes in the Random Adaptive Grouping Algorithm for Large-Scale Global Optimization Problems. In: Proceedings of the International Conference on Applied Mathematics Computational Science , pp 134–145, https://doi.org/10.1109/ICAMCS.NET46018.2018.00031

Sun, L., Yoshida, S., & Liang, Y. (2010). Cooperative Particle Swarm Optimization for Large Scale Numerical Optimization. SCIS & ISIS pp 892–897. https://doi.org/10.14864/softscis.2010.0.892.0

Sun, Y., Kirley, M., & Halgamuge, S. K. (2018). A recursive decomposition method for large scale continuous optimization. IEEE Transactions on Evolutionary Computation, 22(5), 647–661. https://doi.org/10.1109/TEVC.2017.2778089

Tang, K., Li, X., Suganthan, P.N., et al. (2010). Benchmark Functions for the CEC’2010 Special Session and Competition on Large-Scale Global Optimization

Van den Bergh, F., & Engelbrecht, A. P. (2004). A cooperative approach to particle swarm optimization. IEEE Transactions on Evolutionary Computation, 8(3), 225–239. https://doi.org/10.1109/TEVC.2004.826069

Van der Merwe, D., & Engelbrecht, A. (2003). Data Clustering Using Particle Swarm Optimization. In: Proceedings of IEEE Congress on Evolutionary Computation, pp 215–220, https://doi.org/10.1109/CEC.2003.1299577

Wang, Z., Wang, S., Yang, B., et al. (2021). A novel hybrid algorithm for large-scale composition optimization problems in cloud manufacturing. International Journal of Computer Integrated Manufacturing, 34(9), 898–919. https://doi.org/10.1080/0951192X.2021.1946852

Zhang, W., Ma, D., Wei, J., et al. (2014). A parameter selection strategy for particle swarm optimization based on particle positions. Expert Systems with Applications, 41(7), 3576–3584. https://doi.org/10.1016/j.eswa.2013.10.061