Decolorization of RhB dye by manganese oxides: effect of crystal type and solution pH

Hao‐Jie Cui1, Hai‐Zheng Huang2, Baoling Yuan3, Ming‐Lai Fu1
1Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
2College of Civil Engineering, Fuzhou University, Fuzhou, 350116, China
3College of Civil Engineering, Huaqiao University, Xiamen 361021, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Carneiro PA, Umbuzeiro GA, Oliveira DP, Zanoni MVB (2010) Assessment of water contamination caused by a mutagenic textile effluent/dyehouse effluent bearing disperse dyes. J Hazard Mater 174:694–699

Singh K, Arora S (2011) Removal of synthetic textile dyes from wastewaters: a critical review on present treatment technologies. Crit Rev Environ Sci Technol 41:807–878

Mezohegyi G, van der Zee FP, Font J, Fortuny A, Fabregat A (2012) Towards advanced aqueous dye removal processes: a short review on the versatile role of activated carbon. J Environ Manag 102:148–164

Das M, Bhattacharyya KG (2014) Oxidation of Rhodamine B in aqueous medium in ambient conditions with raw and acid-activated MnO2, NiO, ZnO as catalysts. J Mol Catal A Chem 391:121–129

Luo S, Duan L, Sun B, Wei M, Li X, Xu A (2015) Manganese oxide octahedral molecular sieve (OMS-2) as an effective catalyst for degradation of organic dyes in aqueous solutions in the presence of peroxymonosulfate. Appl Catal B Environ 164:92–99

Chen R, Yu J, Xiao W (2013) Hierarchically porous MnO2 microspheres with enhanced adsorption performance. J Mater Chem A 1:11682–11690

Remucal CK, Ginder-Vogel M (2014) A critical review of the reactivity of manganese oxides with organic contaminants. Environ Sci: Processes Impacts 16:1247–1266

Chen H, He J (2008) Facile synthesis of monodisperse manganese oxide nanostructures and their application in water treatment. J Phys Chem C 112:17540–17545

Wang X, Mei L, Xing X, Liao L, Lv G, Li Z et al (2014) Mechanism and process of methylene blue degradation by manganese oxides under microwave irradiation. Appl Catal B: Environ 160–161:211–216

Lan B, Sun M, Lin T, Cheng G, Yu L, Peng S et al (2014) Ultra-long α-MnO2 nanowires: control synthesis and its absorption activity. Mater Lett 121:234–237

Liu Y, Chen Z, Shek C-H, Wu CML, Lai JKL (2014) Hierarchical mesoporous MnO2 superstructures synthesized by soft-interface method and their catalytic performances. ACS Appl Mater Interfaces 6:9776–9784

Cui H-J, Huang H-Z, Fu M-L, Yuan B-L, Pearl W (2011) Facile synthesis and catalytic properties of single crystalline β-MnO2 nanorods. Catal Commun 12:1339–1343

Sui N, Duan Y, Jiao X, Chen D (2009) Large-scale preparation and catalytic properties of one-dimensional α/β-MnO2 nanostructures. J Phys Chem C 113:8560–8565

Ahmed KAM, Li B, Tan B, Huang K (2013) Urchin-like cobalt incorporated manganese oxide OMS-2 hollow spheres: synthesis, characterization and catalytic degradation of RhB dye. Solid State Sci 15:66–72

Hao X, Zhao J, Zhao Y, Ma D, Lu Y, Guo J et al (2013) Mild aqueous synthesis of urchin-like MnOx hollow nanostructures and their properties for RhB degradation. Chem Eng J 229:134–143

Dang T-D, Cheney MA, Qian S, Joo SW, Min B-K (2013) A novel rapid one-step synthesis of manganese oxide nanoparticles at room temperature using poly(dimethylsiloxane). Ind Eng Chem Res 52:2750–2753

Saputra E, Muhammad S, Sun H, Ang HM, Tade MO, Wang S (2013) Different crystallographic one-dimensional MnO2 nanomaterials and their superior performance in catalytic phenol degradation. Environ Sci Technol 47:5882–5887

Merka O, Yarovyi V, Bahnemann DW, Wark M (2011) pH-control of the photocatalytic degradation mechanism of rhodamine B over Pb3Nb4O13. J Phys Chem C 115:8014–8023

Kuan W-H, Chan Y-C (2012) pH-dependent mechanisms of methylene blue reacting with tunneled manganese oxide pyrolusite. J Hazard Mater 239–240:152–159

Xu L, Li X, Ma J, Wen Y, Liu W (2014) Nano-MnOx on activated carbon prepared by hydrothermal process for fast and highly efficient degradation of azo dyes. Appl Catal A General 485:91–98

Chen F, Zhao JC, Hidaka H (2003) Highly selective deethylation of rhodamine B: adsorption and photooxidation pathways of the dye on the TiO2/SiO2 composite photocatalyst. Inter J Photoenergy 5:209–217

He Z, Sun C, Yang S, Ding Y, He H, Wang Z (2009) Photocatalytic degradation of rhodamine B by Bi2WO6 with electron accepting agent under microwave irradiation: mechanism and pathway. J Hazard Mater 162:1477–1486

Natarajan TS, Thomas M, Natarajan K, Bajaj HC, Tayade RJ (2011) Study on UV-LED/TiO2 process for degradation of Rhodamine B dye. Chem Eng J 169:126–134

Yu K, Yang S, He H, Sun C, Gu C, Ju Y (2009) Visible light-driven photocatalytic degradation of rhodamine b over nabio3: pathways and mechanism. J Phys Chem A 113:10024–10032

DeGuzman RN, Shen Y-F, Neth EJ, Suib SL, O’Young C-L, Levine S et al (1994) Synthesis and characterization of octahedral molecular sieves (OMS-2) having the hollandite structure. Chem Mater 6:815–821

Zhao W, Cui H, Liu F, Tan W, Feng X (2009) Relationship between Pb2+ adsorption and average Mn oxidation state in synthetic birnessites. Clays Clay Miner 57:513–520

Ulrich HJ, Stone AT (1989) Oxidation of chlorophenols adsorbed to manganese oxide surfaces. Environ Sci Technol 23:421–428