Decoding the visual and subjective contents of the human brain

Nature Neuroscience - Tập 8 Số 5 - Trang 679-685 - 2005
Yukiyasu Kamitani1, Frank Tong2,3
1ATR Computational Neuroscience Laboratories, 2-2-2 Hikaridai, Keihanna Science City, Kyoto 619-0288, Japan
2Psychology Department, Princeton University, Green Hall, Princeton, USA
3Psychology Department, Vanderbilt University, Nashville, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Hubel, D.H. & Wiesel, T.N. Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. J. Physiol. (Lond.) 160, 106–154 (1962).

Hubel, D.H. & Wiesel, T.N. Receptive fields and functional architecture of monkey striate cortex. J. Physiol. (Lond.) 195, 215–243 (1968).

Blasdel, G.G. Orientation selectivity, preference, and continuity in monkey striate cortex. J. Neurosci. 12, 3139–3161 (1992).

Bartfeld, E. & Grinvald, A. Relationships between orientation-preference pinwheels, cytochrome oxidase blobs, and ocular-dominance columns in primate striate cortex. Proc. Natl. Acad. Sci. USA 89, 11905–11909 (1992).

Paradiso, M.A. A theory for the use of visual orientation information which exploits the columnar structure of striate cortex. Biol. Cybern. 58, 35–49 (1988).

Pouget, A., Dayan, P. & Zemel, R. Information processing with population codes. Nat. Rev. Neurosci. 1, 125–132 (2000).

Haxby, J.V. et al. Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science 293, 2425–2430 (2001).

Cox, D.D. & Savoy, R.L. Functional magnetic resonance imaging (fMRI) 'brain reading': detecting and classifying distributed patterns of fMRI activity in human visual cortex. Neuroimage 19, 261–270 (2003).

Carlson, T.A., Schrater, P. & He, S. Patterns of activity in the categorical representations of objects. J. Cogn. Neurosci. 15, 704–717 (2003).

Vanduffel, W., Tootell, R.B., Schoups, A.A. & Orban, G.A. The organization of orientation selectivity throughout macaque visual cortex. Cereb. Cortex 12, 647–662 (2002).

Kim, D.S., Duong, T.Q. & Kim, S.G. High-resolution mapping of iso-orientation columns by fMRI. Nat. Neurosci. 3, 164–169 (2000).

Engel, S.A., Glover, G.H. & Wandell, B.A. Retinotopic organization in human visual cortex and the spatial precision of functional MRI. Cereb. Cortex 7, 181–192 (1997).

Malonek, D. & Grinvald, A. Interactions between electrical activity and cortical microcirculation revealed by imaging spectroscopy: implications for functional brain mapping. Science 272, 551–554 (1996).

Shtoyerman, E., Arieli, A., Slovin, H., Vanzetta, I. & Grinvald, A. Long-term optical imaging and spectroscopy reveal mechanisms underlying the intrinsic signal and stability of cortical maps in V1 of behaving monkeys. J. Neurosci. 20, 8111–8121 (2000).

Vapnik, V.N. Statistical Learning Theory (Wiley, New York, 1998).

Minsky, L.M. & Papert, S.A. Perceptrons – Expanded Edition: An Introduction to Computational Geometry (MIT Press, Boston, 1987).

Furmanski, C.S. & Engel, S.A. An oblique effect in human primary visual cortex. Nat. Neurosci. 3, 535–536 (2000).

Bauer, R. & Dow, B.M. Complementary global maps for orientation coding in upper and lower layers of the monkey's foveal striate cortex. Exp. Brain Res. 76, 503–509 (1989).

Schall, J.D., Perry, V.H. & Leventhal, A.G. Retinal ganglion cell dendritic fields in old-world monkeys are oriented radially. Brain Res. 368, 18–23 (1986).

Treue, S. & Maunsell, J.H. Attentional modulation of visual motion processing in cortical areas MT and MST. Nature 382, 539–541 (1996).

Treue, S. & Martinez Trujillo, J.C. Feature-based attention influences motion processing gain in macaque visual cortex. Nature 399, 575–579 (1999).

Treue, S. Visual attention: the where, what, how and why of saliency. Curr. Opin. Neurobiol. 13, 428–432 (2003).

Roelfsema, P.R., Lamme, V.A. & Spekreijse, H. Object-based attention in the primary visual cortex of the macaque monkey. Nature 395, 376–381 (1998).

Watanabe, T. et al. Task-dependent influences of attention on the activation of human primary visual cortex. Proc. Natl. Acad. Sci. USA 95, 11489–11492 (1998).

Saenz, M., Buracas, G.T. & Boynton, G.M. Global effects of feature-based attention in human visual cortex. Nat. Neurosci. 5, 631–632 (2002).

Wilson, H.R., Levi, D., Maffei, L., Rovamo, J. & DeValois, R. in Visual Perception: The Neurophysiological Foundations (eds. Spillman, L. & Werner, J.S.) 231–272 (Academic, San Diego, 1990).

Tootell, R.B. et al. Functional analysis of primary visual cortex (V1) in humans. Proc. Natl. Acad. Sci. USA 95, 811–817 (1998).

Boynton, G.M. & Finney, E.M. Orientation-specific adaptation in human visual cortex. J. Neurosci. 23, 8781–8787 (2003).

Kamitani, Y. & Shimojo, S. Manifestation of scotomas created by transcranial magnetic stimulation of human visual cortex. Nat. Neurosci. 2, 767–771 (1999).

Rees, G., Kreiman, G. & Koch, C. Neural correlates of consciousness in humans. Nat. Rev. Neurosci. 3, 261–270 (2002).

Tong, F. Primary visual cortex and visual awareness. Nat. Rev. Neurosci. 4, 219–229 (2003).

Koch, C. The Quest for Consciousness: A Neurobiological Approach (Roberts, Englewood, Colorado, USA, 2004).

Donoghue, J.P. Connecting cortex to machines: recent advances in brain interfaces. Nat. Neurosci. 5 (suppl.): 1085–1088 (2002).

Wolpaw, J.R. & McFarland, D.J. Control of a two-dimensional movement signal by a noninvasive brain-computer interface in humans. Proc. Natl. Acad. Sci. USA 101, 17849–17854 (2004).

Kahneman, D. & Wolman, R.E. Stroboscopic motion: Effects of duration and interval. Percept. Psychophys. 8, 161–164 (1970).

Sereno, M.I. et al. Borders of multiple visual area in humans revealed by functional magnetic resonance imaging. Science 268, 889–893 (1995).

Zeki, S. et al. A direct demonstration of functional specialization in human visual cortex. J. Neurosci. 11, 641–649 (1991).

Watson, J.D. et al. Area V5 of the human brain: evidence from a combined study using positron emission tomography and magnetic resonance imaging. Cereb. Cortex 3, 79–94 (1993).

Tootell, R.B. et al. Functional analysis of human MT and related visual cortical areas using magnetic resonance imaging. J. Neurosci. 15, 3215–3230 (1995).

Woods, R.P., Grafton, S.T., Holmes, C.J., Cherry, S.R. & Mazziotta, J.C. Automated image registration: I. General methods and intrasubject, intramodality validation. J. Comput. Assist. Tomogr. 22, 139–152 (1998).