Decoding the Fingerprint of Ferroelectric Loops: Comprehension of the Material Properties and Structures

Journal of the American Ceramic Society - Tập 97 Số 1 - Trang 1-27 - 2014
Li Jin1, Fei Li1, Shujun Zhang1,2
1Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education and International Center for Dielectric Research, Xi’an Jiaotong University, Xi’an 710049, China
2Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania, 16802

Tóm tắt

Due to the nature of domains, ferroics, including ferromagnetic, ferroelectric, and ferroelastic materials, exhibit hysteresis phenomena with respect to external driving fields (magnetic field, electric field, or stress). In principle, every ferroic material has its own hysteresis loop, like a fingerprint, which contains information related to its properties and structures. For ferroelectrics, many characteristic parameters, such as coercive field, spontaneous, and remnant polarizations can be directly extracted from the hysteresis loops. Furthermore, many impact factors, including the effect of materials (grain size and grain boundary, phase and phase boundary, doping, anisotropy, thickness), aging (with and without poling), and measurement conditions (applied field amplitude, fatigue, frequency, temperature, stress), can affect the hysteretic behaviors of the ferroelectrics. In this feature article, we will first give the background of the ferroic materials and multiferroics, with an emphasis on ferroelectrics. Then it is followed by an introduction of the characterizing techniques for the loops, including the polarization–electric field loops and strain–electric field curves. A caution is made to avoid misinterpretation of the loops due to the existence of conductivity. Based on their morphologic features, the hysteresis loops are categorized to four groups and the corresponding material usages are introduced. The impact factors on the hysteresis loops are discussed based on recent developments in ferroelectric and related materials. It is suggested that decoding the fingerprint of loops in ferroelectrics is feasible and the comprehension of the material properties and structures through the hysteresis loops is established.

Từ khóa


Tài liệu tham khảo

10.1007/BF02836749

10.1201/9781482283051

10.1063/1.3502547

10.1038/nmat1804

10.1103/Physics.2.20

10.1143/JPSJ.27.387

10.1126/science.1129564

10.1126/science.1113357

10.1002/adma.201003636

10.1063/1.3679521

10.1080/00150199408245120

10.1080/00018730902920554

10.1103/PhysRev.78.748

10.1103/PhysRevLett.3.412

10.1080/00018736000101229

10.1038/358136a0

10.1103/PhysRev.17.475

10.1103/PhysRev.19.478

10.1103/PhysRev.20.639

10.1080/00150198708201308

Cross L. E., 1987, Ceramics and Civilization, 289

10.1080/00150199108014053

10.1111/j.1151-2916.1999.tb01840.x

10.1103/PhysRev.82.729

10.1103/PhysRev.83.1078

10.1103/PhysRev.84.476

10.1143/JPSJ.7.333

10.1143/JPSJ.7.5

10.1143/JPSJ.7.12

10.1063/1.1721741

Jaffe B., 1971, Piezoelectric Ceramics

10.1109/PROC.1965.4253

10.1103/PhysRev.76.1886.2

10.1103/PhysRev.93.672

10.1038/181178a0

Smolenskii G. A., 1961, New Ferroelectrics of Complex Composition. IV, Sov. Phys.Solid State, 2, 2651

10.1111/j.1551-2916.2009.03061.x

10.1111/j.1151-2916.1953.tb12820.x

10.1080/00150198708016945

10.1088/0953-8984/15/9/202

10.4028/www.scientific.net/KEM.155-156.81

10.1080/00150198108223490

10.1143/JJAP.21.1298

10.1063/1.365983

10.1007/s100190050014

10.1126/science.275.5308.1878

10.1111/j.1551-2916.2010.04107.x

10.1103/RevModPhys.22.221

10.1088/0034-4885/61/9/002

Lines M. E., 1979, Principles and Applications of Ferroelectrics and Related Materials

10.2172/6911694

Damjanovic D., 2005, The Science of Hysteresis, 337

10.1017/CBO9780511781599

10.1088/0953-8984/20/02/021001

10.1063/1.2949752

10.1103/PhysRev.35.269

Xu Y., 1991, Ferroelectric Materials and Their Applications

aixACCT Available athttp://www.aixacct.com/index.html

Radiant Technologies Available athttp://www.ferrodevices.com/1/297/index.asp#!

10.1103/RevModPhys.77.1083

10.1103/PhysRevB.77.092101

10.1063/1.4754315

M.Davis “Phase Transition Anisotropy and Domain Engineering: The Piezoelectric Properties of Relaxor‐Ferroelectric Single Crystals”; Ph.D. Dissertation Swiss Federal Institute of Technology‐EPFL Lausanne Switzerland 2006.

Introduction of LVDT basics Available athttp://www.macrosensors.com/lvdt_tutorial.html

MTI Instruments Inc. Available athttp://www.mtiinstruments.com/technology/Fotonic.aspx

10.1063/1.1147000

10.1063/1.1145261

10.1063/1.1140644

10.1111/j.1551-2916.2005.00383.x

10.1557/mrs2009.176

10.1063/1.1146024

10.1016/S1359-6454(96)00062-6

10.1016/j.actamat.2007.11.025

10.1080/00018735400101173

10.1007/978-3-0348-7551-6_1

10.1557/JMR.2005.0254

10.1016/0022-3697(64)90175-1

J.Frederick “Strains and Polarization Developed During Electric Field‐Induced Antiferroelectric to Ferroelectric Phase Transformations in Lead Zirconate‐Based Ceramics”; M. S. Thesis Iowa State University Ames Iowa 2010.

10.1063/1.3173198

10.1103/PhysRev.91.513

N.Zhang “Study on the Electric Field Induced Strain of Antiferroelectric Materials”; Ph.D. Dissertation Xi'an Jiaotong University Xi'an China 2013.

10.1016/j.ssc.2010.06.006

10.1063/1.3514093

10.1111/j.1551-2916.2011.04670.x

10.1111/j.1551-2916.2011.04917.x

10.1080/00150199908226132

10.1080/00150197808236770

10.1063/1.352948

10.1109/TUFFC.2010.1670

10.1109/TUFFC.2012.2415

10.1111/j.1551-2916.2012.05462.x

10.1007/s10853-005-5915-7

10.1007/s10853-005-5954-0

10.1063/1.4802792

10.1103/PhysRevLett.100.137602

10.1103/PhysRevLett.68.847

10.1142/S0217979293002912

10.1109/58.655639

10.1126/science.1127798

10.1063/1.2178391

10.1109/T-SU.1966.29394

10.1111/j.1151-2916.1989.tb06177.x

10.1016/j.ssc.2005.10.023

10.1111/jace.12389

10.1111/j.1551-2916.2005.00671.x

10.1063/1.2336999

10.1007/s10832-009-9571-1

10.1016/0956-7151(94)00379-V

10.1007/s00161-005-0207-7

10.1088/0022-3727/40/19/042

10.1177/1045389X07070937

10.1063/1.3486510

10.1016/0378-4363(88)90118-0

10.1016/0375-9601(96)00077-1

10.1063/1.1534412

10.1103/PhysRevB.37.5852

10.1111/j.1151-2916.1989.tb07706.x

10.1103/PhysRevB.62.3065

10.1103/PhysRevB.70.024107

10.1007/BF00584864

10.1016/0022-3697(96)00019-4

10.1016/S1359-6454(01)00025-8

10.1007/s003390050541

10.1016/j.jeurceramsoc.2007.08.010

10.1111/j.1151-2916.1998.tb02389.x

10.1063/1.2778471

10.1103/PhysRevB.78.094103

10.1088/0022-3727/43/28/285401

10.1007/s00339-011-6750-0

10.1063/1.4807315

10.1063/1.1968427

10.1103/PhysRevLett.84.175

10.1103/PhysRev.95.690

L.Jin “Broadband Dielectric Response in Hard and Soft PZT: Understanding Softening and Hardening Mechanisms”; Ph.D. Dissertation Swiss Federal Institute of Technology‐EPFL Lausanne Switzerland 2011.

10.1088/0953-8984/9/23/018

10.1143/JJAP.45.4493

10.1109/TUFFC.2007.336

10.1103/PhysRev.103.1705

10.1063/1.3455328

10.1103/PhysRevB.84.184302

10.1016/j.ceramint.2012.12.047

10.1063/1.343578

10.1063/1.3125431

10.1533/9781845694005.2.304

10.1063/1.1929091

10.1143/JJAP.49.09MD09

10.1023/B:JECR.0000026376.48324.21

10.1557/JMR.2002.0351

10.1111/j.1151-2916.2000.tb01157.x

10.1002/adfm.201002711

10.1002/adfm.201000390

10.1063/1.3437068

10.1088/0964-1726/22/5/055019

10.1146/annurev.matsci.30.1.263

10.1007/s10832-007-9001-1

10.1063/1.1325005

10.1103/PhysRevB.84.054112

10.1111/j.1151-2916.1972.tb11303.x

10.1103/PhysRevB.57.R5559

10.1063/1.2963704

10.1063/1.4811168

10.1063/1.3555465

10.1016/0022-3697(86)90042-9

10.1063/1.3006327

10.1103/PhysRevB.71.174108

10.1111/j.1151-2916.1994.tb04672.x

10.1063/1.112211

10.1143/JJAP.9.1236

10.1111/j.1551-2916.2005.00663.x

10.1111/j.1151-2916.1972.tb13404.x

10.1063/1.2992081

10.1063/1.346212

10.1143/JJAP.45.9119

10.1063/1.366006

10.1063/1.2207738

10.1023/A:1017959111402

10.1063/1.4807665

10.1103/PhysRevB.75.094106

10.1088/0022-3727/29/7/046

10.1103/PhysRevB.55.R649

10.1063/1.1857054

10.1063/1.365981

10.1063/1.2203750

10.1111/j.1551-2916.2009.03218.x

10.1007/978-3-662-04307-3

10.1063/1.1381542

10.1002/adem.200500117

10.1111/j.1551-2916.2007.02041.x

10.1063/1.3056603

10.1063/1.1335819

10.1063/1.2908960

10.1080/00150197008241479

10.1143/JJAP.33.5211

10.1016/0022-3697(96)00010-8

10.1063/1.113558

10.1063/1.369230

10.1063/1.125433

10.1063/1.2221918

10.1063/1.2743910

10.1063/1.1314325

10.1063/1.1687046

10.1016/j.actamat.2010.03.018

10.1111/jace.12028

10.1557/JMR.2008.0415

10.1016/j.sna.2012.08.024

10.1063/1.3082375

10.1111/j.1551-2916.2004.01591.x

10.1063/1.3358138

10.1103/PhysRevB.82.174125

10.1063/1.1722477

10.1063/1.2907990

10.1063/1.1750872

10.1063/1.2363143

10.1063/1.3600058

10.1063/1.3086317

10.1016/j.jallcom.2013.01.034

10.1063/1.2713336

10.1063/1.4795442

10.1063/1.4808351

10.1063/1.3116553

10.1016/j.jcrysgro.2010.11.043

10.1007/s00339-007-4156-9

10.1088/0022-3727/39/4/025

10.1063/1.3042228

10.1016/j.physleta.2009.12.064

10.1007/s00707-011-0462-6

10.1063/1.123053

10.1063/1.4712129

10.1063/1.4803183

10.1063/1.2216028

10.1063/1.2794410

10.1002/adfm.201101301

10.1109/TUFFC.2009.1250

10.1103/PhysRevB.81.014103