Declustering of Seismicity Flow: Statistical Analysis

В. Ф. Писаренко1, М. В. Родкин2
1Institute of Earthquake Prediction Theory and Mathematical Geophysics, Russian Academy of Sciences, Moscow, Russia
2Institute of Earthquake Prediction Theory and Mathematical Geophysics, Russian Academy of Sciences, 117997, Moscow, Russia

Tóm tắt

Từ khóa


Tài liệu tham khảo

Baiesi, M. and Paczuski, M., Scale-free networks of earthquakes and aftershocks, Phys. Rev. E:, 2004, vol. 69, pp. 66–106.

Baranov, S.V. and Shebalin, P.N., Forecasting aftershock activity: 1. Adaptive estimates based on the Omori and Gutenberg–Richter laws, Izv., Phys. Solid Earth, 2016, vol. 52, no. 3, pp. 413–431.

Baranov, S.V. and Shebalin, P.N., Forecasting aftershock activity: 2. Estimating the area prone to strong aftershocks, Izv., Phys. Solid Earth, 2017, vol. 53, no. 3, pp. 366–384.

Baranov, S.V. and Shebalin, P.N., Forecasting aftershock activity: 3. Båth’s dynamic law, Izv., Phys. Solid Earth. 2018, vol. 54, no. 6, pp. 926–932.

Baranov, S.V., Pavlenko, V.A., and Shebalin, P.N., Forecasting aftershock activity: 4. Estimating the maximum magnitude of future aftershocks, Izv., Phys. Solid Earth, 2019, vol. 55, no. 4, pp. 548–562.

Console, R., Jackson, D.D., and Kagan, Y.Y., Using the ETAS model for catalog declustering and seismic background assessment, Pure Appl. Geophys., 2010, vol. 167, pp. 819–830.

Deshcherevskii, A.V., Mirzoev, K.M., and Lukk, A.A., Earthquake grouping criteria for spatially heterogeneous seismicity, Izv., Phys. Solid Earth, 2016, vol. 52, no. 1, pp. 78–95.

Efron, B., Bootstrap methods: another look at the jackknife, Ann. Stat., 1979, vol. 7, no. 1, pp. 1–26.

Felzer, K.R. and Brodsky, E.E., Decay of aftershock density with distance indicates triggering by dynamic stress, Nature, 2006, vol. 441, pp. 735–738. https://doi.org/10.1038/nature04799

Freed, A.M., Earthquake triggering by static, dynamic, and postseismic stress transfer, Ann. Rev. Earth Planet Sci., 2005, vol. 33, pp. 335–367.

Gardner, J.K. and Knopoff, L., Is the sequence of earthquakes in Southern California, with aftershocks removed, Poissonian?, Bull. Seismol. Soc. Am., 1974, vol. 64, no. 5, pp. 1363–1367.

Gomberg, J., The failure of earthquake failure models, J. Geophys. Res., 2001, vol. 106, pp. 16 253–16 264.

Guglielmi, A.V., Foreshocks and aftershocks of strong earthquakes in the light of catastrophe theory, Phys.–Usp., 2015, vol. 58, no. 4, pp. 384–397.

Guglielmi, A.V., Zotov, O.D., and Zavyalov, A.D., The aftershock dynamics of the Sumatra-Andaman earthquake, Izv., Phys. Solid Earth, 2014, vol. 50, no. 1, pp. 64–72.

Guglielmi, A.V., Zavyalov, A.D., Zotov, O.D., and Lavrov, I.P., Dependence of the aftershock flow on the main shock magnitude, Izv., Phys. Solid Earth, 2017, vol. 53, no. 1, pp. 10–17.

Hainzl, S., Zakharova, O., and Marsan, D., Impact of aseismic transients on the estimation of aftershock productivity parameters, Bull. Seismol. Soc. Am., 2013, vol. 103, no. 3, pp. 1723–1732. https://doi.org/10.1785/0120120247

Kocharyan, G.G., Geomekhanika razlomov (Geomechanics of Faults), Moscow: GEOS, 2016.

Lippiello, E., Giacco, F., Marzocchi, W., Godano, C., and de Arcangelis, L., Mechanical origin of aftershocks, Sci. Rep., 2015, vol. 26, no. 5, p. 15 560. https://doi.org/10.1038/srep15560

Lutikov, A.I. and Rodina, S.N., Temporal and power parameters of aftershock process of the Kuriles–Kamchatka earthquakes, Geofiz. Issled., 2013, vol. 14, no. 4, pp. 23–35.

Molchan, G.M. and Dmitrieva, O.E., Aftershock identification: methods and new approaches, Geophys. J. Int., 1992, vol. 109, pp. 501–516.

Molchan, G. and Kronrod, T., The fractal description of seismicity, Geophys. J. Int., 2009, vol. 179, pp. 1787–1799.

Ogata, Y. and Zhuang, J., Space-time ETAS models and an improved extension, Tectonophysics, 2006, vol. 413, pp. 13–23.

Pisarenko, V.F. and Rodkin, M.V., Raspredeleniya s tyazhelymi khvostami: prilozheniya k analizu katastrof, Vychislitel’naya seismologiya, vyp. 38 (Heavy Tailed Distributions: Applications to Catastrophe Analysis, vol. 38 of Computational Seismology), Moscow: GEOS, 2007.

Pisarenko, V. and Rodkin, M., Heavy-Tailed Distributions in Disaster Analysis, vol. 30 of Advances in Natural and Technological Hazards Research Book Series, Dordrecht: Springer, 2010.

Pisarenko, V. and Rodkin, M., Statistical Analysis of Natural Disasters and Related Losses, Springer Briefs in Earth Sciences, Cham: Springer, 2014.

Pisarenko, V.F. and Rodkin, M.V., New approach to estimation of probability of rare extreme events for the case of small samples: application to seismic zoning problem, 17th Int. Conf. on Geoinformatics, Theoretical and Applied Aspects, Kiev, May 14–17, 2017, EAGE, 2018, pp. 14–17.

Pisarenko, V.F. and Rodkin, M.V., A stable modification of the law of repeatability of the earthquakes and the prospects for its application in seismic zoning, Izv., Phys. Solid Earth (in press).

Reasenberg, P., Second-order moment of Central California seismicity, 1969–1982, J. Geophys. Res.: Solid Earth, 1985, vol. 90, no. B7, pp. 5479–5495.

Rodkin, M.V. and Kaftan, V.I., Post-seismic relaxation from geodetic and seismic data, Geod. Geodyn., 2017, vol. 8, pp. 13–16.

Rodkin, M. and Pisarenko, V., New approach to the general seismic zoning problem based on the theory of extreme values, Book of Abstracts of the 36th General Assembly of the European Seismological Commission, September 2–7, 2018, Valetta, ESC2018–S41.

Shawe-Taylor, J. and Cristiani, C., Kernel-Methods for Pattern Analysis, Cambridge: Cambridge Univ., 2004.

Shebalin, P. and Narteau, C., Depth dependent stress revealed by aftershocks, Nat. Commun., 2017, vol. 8, no. 1317. https://doi.org/10.1038/s41467-017-01446-y

Shebalin, P.N., Baranov, S.V., and Dzeboev, B.A., The law of the repeatability of the number of aftershocks, Dokl. Earth Sci., 2018, vol. 481, no. 1, pp. 963–966.

Smirnov, V.B., Ponomarev, A.V., Stanchits, S.A., Potanina, M.G., Patonin, A.V., Dresen, G., Narteau, C., Bernard, P., and Stroganova, S.M., Laboratory modeling of aftershock sequences: stress dependences of the Omori and Gutenberg–Richter parameters, Izv., Phys. Solid Earth, 2019, vol. 55, no. 1, pp. 124–137.

Sobolev, G.A. and Zakrzhevskaya, N.A., On the question of influence of remote earthquakes on seismicity, Izv., Phys. Solid Earth, 2013, vol. 49, no. 4, pp. 474–487.

van Stiphout, T., Zhuang, J., and Marsan, D., Seismicity declustering, Community Online Resource for Statistical Seismicity Analysis, 2012. Available at http://www.corssa.org. https://doi.org/10.5078/corssa-52382934

Uhrhammer, R. Characteristics of Northern and Central California seismicity, Earthquake Notes, 1986, vol. 57, no. 1, p. 21.

Zaliapin, I. and Ben-Zion, Y., Earthquake clusters in Southern California I: Identification and stability, J. Geophys. Res.: Solid Earth, 2013a, vol. 118, no. 6, pp. 2847–2864.

Zaliapin, I. and Ben-Zion, Y., Earthquake clusters in southern California II: Classification and relation to physical properties of the crust, J. Geophys. Res.: Solid Earth, 2013b, vol. 118, no. 6, pp. 2865–2877.

Zaliapin, I., Gabrielov, A., Keilis-Borok, V., and Wong, H., Clustering analysis of seismicity and aftershock identification, Phys. Rev. Lett., 2008, vol. 101, no, 1, pp. 1–4.

Zhuang, J., Werner, M.J., Hainzl, S., Harte, D., and Zhou, S., Basic models of seismicity: spatiotemporal models, Community Online Resource for Statistical Seismicity Analysis, 2011. Available at http://www.corssa.org. https://doi.org/10.5078/corssa-07487583