Decision templates for the classification of bioacoustic time series
Tóm tắt
The classification of time series is topic of this paper. In particular we discuss the combination of multiple classifier outputs with decision templates. The decision templates are calculated over a set of feature vectors which are extracted in local time windows. To learn characteristic classifier outputs of time series a set of decision templates is determined for the individual classes. We present algorithms to calculate multiple decision templates, and demonstrate the behaviour of this new approach on a real world data set from the field of bioacoustics.
Từ khóa
#Biomedical acoustics #Information processing #Data mining #Speech recognition #Signal processing #Speech processing #Recurrent neural networks #Hidden Markov models #Neural networks #Supervised learningTài liệu tham khảo
10.1016/S0031-3203(99)00223-X
10.1007/978-1-4615-3950-6
nischk, 1999, Die Grillengesellschaften zweier neotropischer Waldokosysteme in Ecuador
10.1109/MASSP.1986.1165342
10.1002/j.1538-7305.1975.tb02840.x
rabiner, 1993, Fundamentals of speech recognition
schwenker, 2002, Radial Basis Function Neural Networks and Temporal Fusion for the Classification of Btoacoustic Time Series, Neurocomput
10.1109/21.155943
10.1007/3-540-45014-9_20
dietrich, 2001, Classification of Bloacous-tic Time Series Utilizing Pulse Detection. Time and Frequency Features and Data Fusion, Ulmer Informatik-Berichte 2001–04 University of Ulm
kadous, 2002, Temporal Classification Extending the Classification Paradigm to Multivariate Time Series
ingrisch, 1997, Taxonomy. stridulation and development of Podoscirtinae from Thailand, Senckenbergiana Biology, 77, 47
kuncheva, 2000, Fuzzy Classifier Design Heidelberg New York Physica Verlag, 10.1007/978-3-7908-1850-5
10.1109/34.667881
10.1007/3-540-48219-9_38
bishop, 1995, Neural Networks for Pattern Recognition
10.1016/S0165-0114(99)00161-X