Deciphering the shape and deformation of secondary structures through local conformation analysis

Springer Science and Business Media LLC - Tập 11 - Trang 1-17 - 2011
Julie Baussand1, Anne-Claude Camproux1
1Molécules Thérapeutiques in silico, rue Hélène Brion, France

Tóm tắt

Protein deformation has been extensively analysed through global methods based on RMSD, torsion angles and Principal Components Analysis calculations. Here we use a local approach, able to distinguish among the different backbone conformations within loops, α-helices and β-strands, to address the question of secondary structures' shape variation within proteins and deformation at interface upon complexation. Using a structural alphabet, we translated the 3 D structures of large sets of protein-protein complexes into sequences of structural letters. The shape of the secondary structures can be assessed by the structural letters that modeled them in the structural sequences. The distribution analysis of the structural letters in the three protein compartments (surface, core and interface) reveals that secondary structures tend to adopt preferential conformations that differ among the compartments. The local description of secondary structures highlights that curved conformations are preferred on the surface while straight ones are preferred in the core. Interfaces display a mixture of local conformations either preferred in core or surface. The analysis of the structural letters transition occurring between protein-bound and unbound conformations shows that the deformation of secondary structure is tightly linked to the compartment preference of the local conformations. The conformation of secondary structures can be further analysed and detailed thanks to a structural alphabet which allows a better description of protein surface, core and interface in terms of secondary structures' shape and deformation. Induced-fit modification tendencies described here should be valuable information to identify and characterize regions under strong structural constraints for functional reasons.

Tài liệu tham khảo

Ofran Y, Rost B: Analysing six types of protein-protein interfaces. J Mol Biol 2003, 325: 377–387. 10.1016/S0022-2836(02)01223-8 Lo Conte L, Chothia C, Janin J: The atomic structure of protein-protein recognition sites. J Mol Biol 1999, 285: 2177–2198. 10.1006/jmbi.1998.2439 Glaser F, Steinberg D, Vakser I, Ben-Tal N: Residue frequencies and pairing preference at protein-protein interfaces. Proteins 2001, 43: 89–102. 10.1002/1097-0134(20010501)43:2<89::AID-PROT1021>3.0.CO;2-H Res I, Lichtarge O: Character and evolution of protein-protein interfaces. Phys Biol 2005, 2: S36-S43. 10.1088/1478-3975/2/2/S04 Guharoy M, Chakrabarti P: Conserved residue clusters at protein-protein interfaces and their use in binding site identification. BMC Bioinformatics 2010, 11: 286. 10.1186/1471-2105-11-286 Chakrabarti P, Janin J: Dissecting protein-protein recognition sites. Proteins 2002, 15: 334–343. 10.1002/prot.10085 Bahadur R, Chakrabarti P, Rodiffer F, Janin J: Dissecting subunit interfaces in homodimeric proteins. Proteins 2003, 53: 708–719. 10.1002/prot.10461 Neuvirth H, Raz R, Schreiber G: ProMate: a structure based prediction program to identify the location of protein-protein binding site. J Mol Biol 2004, 338: 181–199. 10.1016/j.jmb.2004.02.040 Hoskins J, Lovell S, Blundell T: An algorithm for predicting interaction sites: abnormally exposed amino acid residues and secondary structure elements. Protein Sci 2006, 5: 1017–1029. 10.1110/ps.051589106 Guharoy M, Chakrabarti P: Secondary structures based analysis and classification of biological interfaces: identification of binding motifs in protein-protein interactions. Bioinformatics 2007, 23: 1909–1918. 10.1093/bioinformatics/btm274 Betts M, Sternberg M: An analysis of conformational changes on protein-protein association: implications for predictive docking. Protein Eng 1999, 12: 271–283. 10.1093/protein/12.4.271 Smith G, Sternberg M, Bates P: The relationship between the flexibility of proteins and their conformational states on forming protein-protein complexes with an application to protein-protein docking. J Mol Biol 2005, 347: 1077–1101. 10.1016/j.jmb.2005.01.058 Yogurtcu O, Erdemli S, Nussinov R, Turkay M, Keskin O: Restricted mobility of conserved residues in protein-protein interfaces in molecular simulations. Biophys J 2008, 94: 3475–3485. 10.1529/biophysj.107.114835 Valdar W, Thornton J: Conservation helps to identify biologically relevant crystal contacts. J Mol Biol 2001, 313: 399–416. 10.1006/jmbi.2001.5034 Mintseris J, Weng Z: Atomic contacts vectors in protein-protein recognition. Proteins 2003, 53: 629–639. 10.1002/prot.10432 Jeerson E, Walsh T, Barton G: Biological units and their effects upon the properties and prediction of protein-protein interactions. J Mol Biol 2006, 364: 1118–1129. 10.1016/j.jmb.2006.09.042 De S, Krishnadev O, Srinivasan N, Rekha N: Interaction preferences across protein-protein interfaces of obligatory and non-obligatory components are different. BMC Struct Biol 2005, 16: 15. 10.1186/1472-6807-5-15 Zhanhua C, Gah-Kok Gan J, Lei L, Sakharkar M, Kangueane P: Protein subunit interfaces: heterodimers versus homodimers. Bioinformation 2005, 2: 28–39. Mintseris J, Weng Z: Structure, function and evolution of transient and obligate protein-protein interactions. Proc Natl Acad Sci 2005, 102: 10930–10935. 10.1073/pnas.0502667102 Vacic V, Uversky V, Dunker A, Lonardi S: Composition Profiler: a tool for discovery and visualization of amino acid composition difference. BMC Bioinformatics 2007, 8: 211. 10.1186/1471-2105-8-211 Jones S, Thornton J: Protein-protein interactions: a review of protein dimer structures. Prog Biophys Molec Biol 1995, 63: 31–65. 10.1016/0079-6107(94)00008-W Argos P: An investigation of protein subunit and domain interfaces. Protein Eng 1998, 2: 101–113. 10.1093/protein/2.2.101 Miller S: The structure of interfaces between subunits of dimeric and tetrameric proteins. Protein Eng 1989, 3: 77–83. 10.1093/protein/3.2.77 Keskin O, Nussinov R: Favorable scaffolds: proteins with different sequence, structure and function may associate in similar ways. PEDS 2005, 18: 11–24. May A, Zacharias M: Accounting for global protein deformability during protein-protein and protein-ligand docking. Biochim Biophys Acta 2005, 30: 225–231. Koshland D: Application of a theory of enzyme specificity to protein synthesis. Proc Natl Acad Sci 1958, 44: 98–104. 10.1073/pnas.44.2.98 Tsai C, Kumar S, Ma B, Nussinov R: Folding funnels, binding funnels and protein function. Protein Sci 1999, 8: 1181–1190. 10.1110/ps.8.6.1181 Daily M, Gray J: Local motions in a benchmark of allosteric proteins. Proteins 2007, 67: 385–399. 10.1002/prot.21300 Goh CS, Milburn D, Gerstein M: Conformational changes associated with protein-protein interactions. Curr Op Struct Biol 2004, 14: 104–109. 10.1016/j.sbi.2004.01.005 Wlodarski T, Zagrovic B: Conformational selelction and induced fit mechanism underlie specifity in non-covalent interactions with ubiquitin. Proc Natl Acad Sci 2009, 106: 19346–19351. 10.1073/pnas.0906966106 Gutteridge A, Thornton J: Conformational changes observed in enzyme crystal structures upon substrate binding. J Mol Biol 2005, 346: 21–28. 10.1016/j.jmb.2004.11.013 Perica T, Chothia C: Ubiquitin - molecular dynamics for recognition of different structures. Curr Op Struct Bio 2010, 20: 367–376. 10.1016/j.sbi.2010.03.007 Dan A, Ofran Y, Kliger Y: Large-scale analysis of secondary structure changes in proteins suggests a role for disorder-to-order transitions in nucleotide binding proteins. Proteins 2009, 78: 236–248. 10.1002/prot.22531 Martin J, Regad L, Lecornet H, Camproux A: Structural deformation upon protein-protein interaction: a structural alphabet approach. BMC Struct Biol 2008, 18: 12. 10.1186/1472-6807-8-12 Kumar S, Bansal M: Geometrical and sequence characteristics of alpha-helices in globular proteins. Biophys 1998, 75: 1935–1944. 10.1016/S0006-3495(98)77634-9 Camproux A, Gauthier R, Tuery P: A hidden Markov model derived structural alphabet for proteins. J Mol Biol 2004, 339: 591–605. 10.1016/j.jmb.2004.04.005 Camproux A, Tuffery P: Hidden Markov Model-derived structural alphabet for proteins: the learning of protein local shapes captures sequence specificity. Biochim Biophys Acta 2005, 1724: 394–403. Regad L, Martin J, Camproux A: Identification of non-random motifs in loops using a structural alphabet. IEEE Symposium on Computational Intelligence and Bioinformatics and Computational Biology 2006, 1–9. Miller S, Janin J, Lesk A, Chothia C: Interior and surface of monomeric proteins. J Mol Biol 1987, 196: 641–656. 10.1016/0022-2836(87)90038-6 Jones S, Thornton J: Principles of protein-protein interactions. Proc Natl Acad Sci 1996, 93: 13–20. 10.1073/pnas.93.1.13 Pal A, Chakrabarti P, Bahadur R, Rodiffer F, Janin J: Peptide segments in protein-protein interfaces. J Biosci 2007, 32: 101–111. 10.1007/s12038-007-0010-7 Bogan A, Thron K: Anatomy of hot spots in protein interfaces. J Mol Biol 1998, 280: 1–9. 10.1006/jmbi.1998.1843 Kawabata T: MATRAS: a program for protein 3 D structure comparison. Nuc Ac Res 2003, 31: 3367–3369. 10.1093/nar/gkg581 Huse M, Chen YG, Massague J, Kuriyan J: Crystal structure of the cytoplasmic domain of the type I TGF-beta receptor in complex with FKBP12. Cell 1999, 96: 425–436. 10.1016/S0092-8674(00)80555-3 Huse M, Muir T, Chen YG, Kuriyan J, Massague J: The TGF-beta receptor activation process: an inhibitor- to substrate-binding switch. Molecular Cell 2001, 8: 671–682. 10.1016/S1097-2765(01)00332-X Bennett M, Lebron J, Bjorkman P: Crystal structure of the hereditary haemochromatosis protein HFR complexed with transferin receptor. Nature 2000, 403: 46–53. 10.1038/47417 Lebron J, Bjorkman P: The transferrin receptor binding site on HFE, the class I MHC-related protein mutated in hereditary hemochromatosis. J Mol Biol 1999, 289: 1109–1118. 10.1006/jmbi.1999.2842 Pike A, Brzozowski A, Roberts S, Olsen O, Persson E: Structure of human factor VIIa and its implications for the trigerring of blood coagulation. Proc Natl Acad Sci 1999, 96: 8925–8930. 10.1073/pnas.96.16.8925 Zhang E, Charles RS, Tulinsky A: Structure of extracellular tissue factor complexed with factor VIIa inhibited with a BTPi mutant. J Mol Biol 1999, 285: 2089–2104. 10.1006/jmbi.1998.2452 Ban Y, Edelsbrunner H, Rudolph J: Interface surfaces for protein-protein complexe. J ACM 2006, 53: 361–378. 10.1145/1147954.1147957 Darnell S, Page D, Mitchell J: An automated decision-tree approach to predicting protein interaction hot spots. Proteins 2007, 68: 813–823. 10.1002/prot.21474 Yu J, Guo M: Prediction of protein-protein interactions from secondary structures in binding motifs using the statistic method. In Proceedings of the 2008 Fourth International Conference on Natural Computation 2008. Regad L, Martin J, Nuel G, Camproux A: Mining protein loops using a structural alphabet and statistical exceptionality. BMC Bioinformatics 2010, 11: 75. 10.1186/1471-2105-11-75 Korn A, Burnett R: Distribution and complementarity of hydropathy in multisubunit proteins. Proteins 1991, 9: 37–55. 10.1002/prot.340090106 Tuery P, Guyon F, P D: Improved greedy algorithm for protein structure reconstruction. J Comput Chem 2005, 26: 506–513. 10.1002/jcc.20181 Podtelezhnikov AD, Wild D: Reconstruction and stability of secondary structure elements in the context of protein structure prediction. Biophys J 2009, 96: 4399–4408. 10.1016/j.bpj.2009.02.057 B-Rao C, Subramaniana J, Sharmaa S: Managing protein flexibility in docking and its applications. Drug Discovery Today 2009, 14: 394–400. 10.1016/j.drudis.2009.01.003 Kim Y, Rose C, Liu Y, Ozaki Y, Datta G, Tu A: FT-IR and near-infrared FT-Raman studies of the secondary structure of insulinotropin in the solid state: alpha-helix to beta-sheet conversion induced by phenol and/or by high shear force. J Pharm Sci 1994, 83: 1175–1180. 10.1002/jps.2600830819 Jiao W, Qian M, Li P, Zhao L, Chang Z: The essential role of the flexible termini in the temperature-responsiveness of the oligomeric state and chaperone-like activity for the polydisperse small heat shock protein IbpB from Escherichia coli. J Mol Biol 2005, 347: 871–884. 10.1016/j.jmb.2005.01.029 Guo J, Jaromczyk J, Xu Y: Analysis of chameleon sequences and their implications in biological processes. Proteins 2007, 67: 548–558. 10.1002/prot.21285 Tuncbag N, Gursoy A, Guney E, Nussinov R, Keskin O: Architectures and functional coverage of protein-protein interfaces. J Mol Biol 2008, 381: 785–802. 10.1016/j.jmb.2008.04.071 Teyra J, Pisabarro M: Characterization of interfacial solvent in protein complexes and contributions of wet spots to the interface description. J Proteins 2007, 67: 1087–1095. 10.1002/prot.21394 Mintseris J, Wieke K, Pierce B, Anderson R, Chen R, Janin J, Weng Z: Protein-protein docking benchmarck 2.0: an update. . Proteins 2005, 60: 214–216. 10.1002/prot.20560 Hwang H, Pierce B, Mintseris J, Janin J, Weng Z: Protein-protein docking benchmark version 3.0. Proteins 2008, 73: 705–709. 10.1002/prot.22106 Le Roux B, Rouanet H: Geometric Data Analysis, From Correspondence Analysis to Structured Data Analysis. Dordrecht: Kluwer; 2004. Jolliffe I: Principal Component Analysis, Springer Series in Statistics. 2nd edition. New York: Springer; 2002. Hubbard SJTJ: NACCESS. Tech. rep., Computer Program, Department of Biochemistry and Molecular Biology, University College London 1993. [http://www.bioinf.manchester.ac.uk/naccess/]